APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 382-392    DOI: 10.1007/s11770-016-0554-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于岩石物理模型的页岩油储层各向异性研究
郭智奇1,刘财1,刘喜武2,3,4,董宁2,3,4,刘宇巍2,3,4
1. 吉林大学地球探测科学与技术学院,长春 130021
2. 中国石化页岩油气勘探开发重点实验室,北京 100083
3. 中国石化石油勘探开发研究院,北京 100083
4. 中国石化页岩油气富集机理与有效开发国家重点实验室,北京 100083
Research on anisotropy of shale oil reservoir based on rock physics model
Guo Zhi-Qi1, Liu Cai1, Liu Xi-Wu2,3,4, Dong Ning2,3,4, and Liu Yu-Wei2,3,4
1. Geo-Exploration Science and Technology Institute, Jilin University, Changchun 130021, China.
2. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China.
3. SinoPEC Exploration & Production Research Institute, Beijing 100083, China.
4. National Key Laboratory of Corporation of Shale Oil/Gas Enrichment Mechanism and Effective Development, Beijing 100083, China.
 全文: PDF (1360 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对沾化凹陷罗家地区泥页岩进行岩石物理建模,在Backus平均理论中引入粘土矿物压实指数,考虑粘土定向排列引起的各向异性,由Chapman多尺度理论考虑裂缝系统引起的各向异性。根据储层物性特征,以水平缝为主控因素开发基于模型的反演算法,计算裂缝密度和各向异性参数。结果表明,反演的水平裂缝密度与岩心实测的水平渗透率有很好的正相关性,说明裂缝密度可作为渗透率的有效指示参数,同时也表明研究层段泥页岩的裂缝密度与粘土和石英等陆源碎屑含量呈负相关,而与碳酸盐岩含量呈正相关。同时,裂缝的存在使得纵波各向异性大于横波各向异性,裂缝密度与纵波各向异性参数呈明显正相关,而粘土含量与横波各向异性具有明显正相关性。这充分证明了岩石物理建模方法与裂缝反演技术的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词页岩   岩石物理   粘土矿物   裂缝   各向异性     
Abstract: Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents.
Key wordsShale   rock physics   clay mineral   fracture   anisotropy   
收稿日期: 2016-04-13;
基金资助:

本研究由国家自然科学基金(编号:41404090,U1262208,U1663207)、中国石化页岩油气勘探开发重点实验室开放基金(编号:G5800-15-ZS-WX039)和实验室项目(编号:G5800-15-ZS-WX004)联合资助。

引用本文:   
. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
. Research on anisotropy of shale oil reservoir based on rock physics model[J]. APPLIED GEOPHYSICS, 2016, 13(2): 382-392.
 
[1] Bayuk, I. O., Ammerman, M., and Chesnokov, E. M., 2007, Elastic moduli of anisotropic clay: Geophysics, 72(5), D107−D117.
[2] Carcione, J. M., 2000, A model for seismic velocity and attenuation in petroleum source rocks: Geophysics, 65(4), 1080−1092.
[3] Carcione, J. M., Helle, H. B., and Avseth, P., 2011, Source-rock seismic-velocity models: Gassmann versus Backus: Geophysics, 76(5), N37−N45.
[4] Chapman, M., 2003, Frequency dependent anisotropy due to meso-scale fractures in the presence of equant porosity: Geophysical Prospecting, 51(5), 369-379.
[5] Chapman, M, Maultzsch, S., Liu, E., and Li, X. Y., 2003, The effect of fluid saturation in an anisotropic multi-scale equant porosity model: Journal of Applied Geophysics, 54, 191-202.
[6] Deng, J. X., Wang, H., Zhou, H., et al., 2015, Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale: Chinese Journal of Geophysics (in Chinese), 58(6), 2123−2136.
[7] Dong, N., Huo, Z. Z., Sun, Z. D., et al., 2014, An inversion of a new rock physics model for shale:Chinese Journal of Geophysics (in Chinese), 57(6), 1990−1998.
[8] Guo, Z. Q., and Li, X. Y., 2015, Rock physics model-based prediction of shear wave velocity in the Barnett Shale formation: Journal of Geophysics and Engineering. 12, 527−534.
[9] Guo, Z. Q., Li, X. Y., and Liu, C., 2014, Anisotropy parameters estimate and rock physics analysis for the Barnett Shale: Journal of Geophysics and Engineering, 11, 1−10.
[10] Guo, Z. Q., Li, X. Y., Liu, C., Feng, X., and Shen, Y., 2013, A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale: Journal of Geophysics and Engineering, 10, 1−10.
[11] Hornby, B. E., Schwartz, L. M., and Hudson, J. A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570−1583.
[12] Hu, Q., Cheng, X. H., and Li, J. Y., 2014, Shear velocity prediction for organic shales based on the single aspect ratio model: Progress in Geophysics (in Chinese), 29(5), 2388−2394.
[13] Li, Y., Guo, Z. Q., Liu, C., Li, X. Y., and Wang, G., 2015, A rock physics model for the characterization of organic-rich shale from elastic properties: Petroleum Science, 12(2), 264−272.
[14] Mba, K., and Prasad, M., 2010, Mineralogy and its contribution to anisotropy and kerogen stiffness variations with maturity in the Bakken Shales: 80th Annual International Meeting, SEG, Expand Abstracts, 2612−2616.
[15] Metwally, Y., and Chesnokov, E. M., 2011, Gas shale: relationships between permeability and intrinsic composition: 81th Annual International Meeting, SEG, Expand Abstracts, 4414−4419.
[16] Ortega, J. A., Ulm F. J., and Abousleiman, Y., 2009, The nanogranular acoustic signature of shale: Geophysics, 74(3), D65−D84.
[17] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53, 667−676.
[18] Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62(6), 1954-1974.
[19] Spikes, K. T., 2011, Modeling elastic properties and assessing uncertainty of fracture parameters in the Middle Bakken Siltstone: Geophysics, 76(4), E117−26.
[20] Vernik, L., and Nur, A., 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727-735.
[21] Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales: A petrophysical study: Geophysics, 62(2), 521−532.
[22] Vernik, L., and Milovac, J., 2011, Rock physics of organic shales: The Leading Edge, 30(3), 318−323.
[23] Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, Prediction for in-situ formation stress of shale based on rock physics equivalent model: Chinese Journal of Geophysics (in Chinese), 58(6), 2112−2122.
[1] 王浩,李宁,王才志,武宏亮,刘鹏,李雨生,刘英明,原野. 井旁裂缝对偶极横波反射波幅度影响分析*[J]. 应用地球物理, 2019, 16(1): 1-14.
[2] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[3] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[4] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[6] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[7] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[8] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[9] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[10] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[11] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[12] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[13] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[14] 杨学立,李博,彭传圣,杨洋. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
[15] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司