APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 406-415    DOI: 10.1007/s11770-016-0564-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用
罗伟平1,2,李洪奇1,2,石宁1,2
1. 中国石油大学(北京),地球物理与信息工程学院,北京102200
2. 石油数据挖掘北京市重点实验室(编号:Z121109009212008),北京102200
Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir
Luo Wei-Ping1,2, Li Hong-Qi1,2, and Shi Ning1,2
1. College of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102200, China.
2. Beijing Key Laboratory of Petroleum Data Mining (No. 121109212008), China University of Petroleum (Beijing), Beijing 102200, China.
 全文: PDF (1188 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 勘探开发初期海上油田钻井少、井间距离大,在应用地震多属性分析技术预测储层参数的过程中,直接采用监督最小二乘支持向量机算法预测精度较低。本文将最小二乘支持向量机与半监督学习理论结合,提出基于最小二乘支持向量机协同训练的半监督回归模型,并在模型训练过程中引入矩阵迭代求逆的方法,提高模型训练速度。利用UCI数据集实验研究,对比了半监督与监督最小二乘支持向量机模型,结果表明,半监督学习机制能够有效地提高最小二乘支持向量机的泛化性能,且随着训练样本的减小,效果更加明显;同时对比了半监督最小二乘支持向量机与半监督k-临近算法,结果显示,在小样本建模中,半监督最小二乘支持向量机有着更高的预测精度。最终将半监督最小二乘支持向量机运用于锦州工区,预测该区的砂体及储层孔隙度的分布,获得了较好的地质效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词半监督学习   最小二乘支持向量机   地震属性分析   储层预测     
Abstract: At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi-supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
Key wordsSemi-supervised learning   least squares support vector machine, seismic attributes   reservoir prediction   
收稿日期: 2015-05-08;
基金资助:

本研究由“十二五”国家科技重大专项子课题:测井数据与地震数据融合技术研究(编号:2011ZX05023-005-006)资助。

引用本文:   
. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
. Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir[J]. APPLIED GEOPHYSICS, 2016, 13(2): 406-415.
 
[1] Ahmadi, M. A., and Bahadori, A., 2015, A LSSVM approach for determining well placement and conning phenomena in horizontal wells: Fuel, 153(1), 276-283.
[2] Blum, A., and Mitchell, T., 1998, Combining labeled and unlabeled data with co-training: Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT98), Wisconsin, MI, 92−100.
[3] Blum, A., and Chawla, S., 2001, Learning from labeled and unlabeled data using graph mincuts: Proceedings of the 18th International Conference on Machine Learning (ICML’01), San Francisco, CA, 19−26.
[4] Doquire, G., and Verleysen, M., 2013, A graph Laplacian based approach to semi-supervised feature selection for regression problems: Neurocomputing, 121, 5−13.
[5] Liang, J. Y., Gao, J. W., and Chang, Y., 2009, The semi-supervised learning research progress: Journal of Shanxi University (Natural Science Edition), 32(4), 528−534.
[6] Lu, Z. W., and Wang, L.W., 2015, Noise-robust semi-supervised learning via fast sparse coding: Pattern Recognition, 48(1), 605−612.
[7] Mesbah, M., Soroushb, E., Azari, V., et al., 2015, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm: The Journal of Supercritical Fluids, 97(1), 256−267.
[8] Shamanism, B., and Landgrebe, D., 1994, The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon: IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087−1095.
[9] Song, X. N., Liu, Z., Yang, X. B., Yang, J. Y., and Qi, Y. S., 2015, Extended semi-supervised fuzzy learning method for nonlinear outliers via pattern discovery: Applied Soft Computing, 29, 245−255.
[10] Wang, X. J., Hu, G. M., and Cao, J. X., 2010, Application of multiple attributes fusion technology in the Su-14 Well Block: Applied Geophysics, 7(3), 257−264.
[11] Yamazaki, K., 2015, Accuracy analysis of semi-supervised classification when the class balance changes: Neurocomputing, 160, 5−13.
[12] Zhou, Z. H., and Li, M., 2007, Semi-Supervised Regression with Co-Training Style Algorithms: IEEE Transactions on Geoscience and Remote Sensing, 10(20), 1−32.
[13] Zhou, Z. H., and Wang, Y., 2007, Machine learning and its applications: Tsinghua University Press, Beijing, 259−275.
[14] Zuo, L., Li, L. Q., and Chen, C., 2015, The graph based semi-supervised algorithm with ?-1 regularizer: Neurocomputing, 149(PB), 966−974.
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 贺芙邦, 游俊, 陈开远. 基于岩石物理分析的叠前弹性反演预测含气砂岩分布[J]. 应用地球物理, 2011, 8(3): 197-205.
[3] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司