APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 343-352    DOI: 10.1007/s11770-016-0557-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
分数阶S变换,第二部分:在储层预测及流体识别中的应用
杜正聪1,2,胥德平1,3,张金明4
1. 成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059
2. 攀枝花学院,攀枝花 617000
3. 成都理工大学数学地质四川省重点实验室,成都 610059
4.成都理工大学地球物理学院,成都 610059
Fractional S-transform?part 2: Application to reservoir prediction and fluid identification
Du Zheng-Cong1,2, Xu De-Ping1,3, and Zhang Jin-Ming4
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. Panzhihua University, Panzhihua 617000, China.
3. Geomathematics Key Laboratory of Sichuan Province of Chengdu University of Technology, Chengdu 610059, China.
4. Geophysical college of Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (4059 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 分数阶S变换(FRST)具有较强的时频聚集性。利用FRST处理地震数据,通过合适的分数阶参数将频率轴旋转到适当位置,即可实现目标地质特征信息的最佳识别。由于不同的地震信号的最优分数阶参数可能不同,因而对整体的分数阶参数的最优估计不利于对多道地震数据的处理。本文首先利用FRST分离出共频率数据体,并利用共频率数据体进行了低频伴影分析,然后提出FRST和盲分离结合的方法,不需要对地震数据的最优分数阶参数进行估计,即可提取识别有效地质特征信息的独立频谱,提高对地震数据的解释效率。相比较于传统的ST,在FRST的共频率剖面上能较清晰地显示出储层顶底界面,从而FRST能够提高低频伴影分析的纵向分辨率。仿真实验表明在分数阶时频域内此方法能有效分离出独立的频率信息。将该方法用于实际的地震数据,并与已知井信息进行比对,验证了其有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词分数阶S变换   FastICA   分数阶时频分析   谱分解     
Abstract: The fractional S-transform (FRST) has good time–frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time–fractional-frequency domain. We used field seismic and well data to verify the proposed method.
Key wordsfractional S-transform   FastICA   fractional time–frequency analysis   spectral decomposition   
收稿日期: 2016-04-07;
基金资助:

本研究由“成都理工大学油气藏地质及开发工程”国家重点实验室开放基金(PLC201402)和国家自然科学基金(A类)(编号:U1562111)资助。

引用本文:   
. 分数阶S变换,第二部分:在储层预测及流体识别中的应用[J]. 应用地球物理, 2016, 13(2): 343-352.
. Fractional S-transform?part 2: Application to reservoir prediction and fluid identification[J]. APPLIED GEOPHYSICS, 2016, 13(2): 343-352.
 
[1] Akan, A., and Çekiç, Y., 2003, A fractional Gabor expansion: Journal of the Franklin Institute, 340(5), 391-397.
[2] Almeida, L. B., 1994, The fractional Fourier transform and time-frequency representations: IEEE Tran Signal Processing, 42(11), 3084-3091.
[3] Bingham, E. and Hyvärinen, A., 2000, A fast fixed-point algorithm for independent component analysis of complex-valued signals: International Journal of Neural Systems, 10(1), 1-8.
[4] Chen, X. H., He, Z. H., Huang, D. J., et al., 2009, Low frequency shadow detection of gas reservoir s in time-frequency domain: Chinese J. Geophysics. (in Chinese), 52(1), 215-221.
[5] Comen, P., 1994, Independent component analysis, a new concept?: Signal Processing, 36(3), 287-314.
[6] Durak, L., and Arikan, O., 2003, Short-time Fourier transform: two fundamental properties and optimal implementation: IEEE Trans. on Signal Processing, 51(5), 1231-1242.
[7] He, Z. H., Xiong, X. J., and Bian, L., 2008, Numerical simulation of seismic low-frequency shadows and its application: Applied Geophysics, 5(4), 301-306.
[8] Huang, Y., and Suter, B., 1998, The Fractional Wave Packet Transform: Multidimensional Systems and Signal Processing, 9(4), 399-402.
[9] Hyvärinen, A., 1999, Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans. on Neural Network, 10(3), 626-634.
[10] Li, Y., and Zheng, X., 2007, Wigner-Ville distribution and its application in seismic attenuation estimation: Applied Geophysics, 4(4), 245-254.
[11] Rioul, O., and Vetterli, M., 1991, Wavelets and signal processing: IEEE Signal Processing, 8(4), 14-38.
[12] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform: IEEE trans. on signal processing, 44(4), 998-1001.
[13] Tao, R., Li, Y. L., and Wang, Y., 2010, Short-Time Fractional Fourier Transform and Its Applications: IEEE Transactions on Signal Processing, 58(5), 2568-2580.
[14] Wexler, R., 1990, Discrete Gabor expansions: Signal Processing, 21(3), 207-220.
[15] Xu, D. P., and Guo, K., 2012, Fractional S transform−part 1: Theory: Applied Geophysics, 9(1), 73-79.
[1] 陈颖频, 彭真明, 贺振华, 田琳, 张洞君. 基于自适应窗函数的最优分数域Gabor变换及其应用[J]. 应用地球物理, 2013, 10(3): 305-313.
[2] 陈学华, 贺振华, 朱四新, 刘伟, 钟文丽. 地震低频信息计算储层流体流度的方法及其应用[J]. 应用地球物理, 2012, 9(3): 326-332.
[3] 胥德平, 郭科. 分数阶S变换:第一部分,理论[J]. 应用地球物理, 2012, 9(1): 73-79.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司