APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 257-266    DOI: 10.1007/s11770-016-0562-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于网格加密-收缩的2.5D直流电法有限元模拟
张钱江1,2,戴世坤1,陈龙伟2强建科1,李昆1,赵东东1
1. 中南大学 地球科学与信息物理学院,湖南 长沙 410083
2. 桂林理工大学 地球科学学院,广西 桂林 541004
Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement
Zhang Qian-Jiang1,2, Dai Shi-Kun1, Chen Long-Wei2, Qiang Jian-Ke1, Li Kun1, and Zhao Dong-Dong1
1. School of Geosciences and info-physics, Central South University, Changsha 410083, China.
2. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China.
 全文: PDF (663 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在直流电法有限元数值模拟中,针对常规结构化网格源点附近网格节点数值精度低的问题,并考虑计算效率和反演成像的需求,本文在二维点源问题中提出一种新的网格加密-收缩方法。其核心思想是在结构化网格计算区域中先后引入网格节点加密和网格节点收缩两个环节。通过在计算区域水平方向上均匀加密网格节点密度,降低源点奇异性的影响范围,并提升对地形的模拟能力;通过在计算区域垂向方向上将多个网格收缩到一个网格中,降低网格节点的规模,进而提高数值计算的效率。理论模型检验表明,网格加密-收缩方法能有效地解决源的奇异性问题,与均匀加密网格相比,网格节点总数降低了约80%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词直流电阻率法   网格加密-收缩   数值模拟   有限单元法     
Abstract: To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
Key wordsDirect current resistivity method   mesh refinement and recoarsement   finite-element method   
收稿日期: 2016-03-13;
基金资助:

本研究由国家自然科学基金项目(编号:41574127和41174104)和国家科技重大专项“十三五”计划(编号:2016ZX05018006-006)联合资助。

引用本文:   
. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement[J]. APPLIED GEOPHYSICS, 2016, 13(2): 257-266.
 
[1] Blome, M., Marer, H. R., and Schidt, K., 2009, Advances in three-dimensional geoelectric forward solver techniques: Geophys. J. Int., 176(3), 740−752.
[2] Coggon, J. H., 1971, Electromagnetic and electric modeling by the finite element method: Geophysics, 36(6), 132−155.
[3] Di, Q. Y., and Wang, M. Y., 1998, The real-like 2D FEM modeling research on the field characteristics of direct electric current field: Chinese J. Geophys. (in Chinese), 41(2), 252−260.
[4] Günther, T., Rücker, C., and Spitzer, K., 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography-II. Inversion: Geophys. J. Int., 166(2), 506−517.
[5] Hu, H. L., Xiao, X., Pan, K. J., Tang, J. T., and Xie, W., 2014, Finite element modeling of 2.5D DC resistivity based on locally refined graded mesh: Journal of Central South University (Science and Technology), 45(7), 2259−2267.
[6] Huang, L. P., and Dai, S. K., 2002, Finite Element calculation method of 3D electromagnetic field under complex condition: Earth Science-Journal of China University of Geosciences (in Chinese), 27(6), 776−779.
[7] LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., and Owen, E., 1996, The effects of noise on Occam’s inversion of resistivity tomography data: Geophysics, 61(2), 538−548.
[8] Li, J. M., 2005, Geoelectric field and electrical exploration (in Chinese): Beijing, Geological Publishing House, Beijing.
[9] Li, S. C., Nie, L. C., Liu, B., Song, J., Liu, Z. Y., Su, M. X., Xu, L., and Sun, H. F., 2013, 3D electrical resistivity inversion using prior spatial shape constraints: Applied Geophysics, 10(4), 361−372.
[10] Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95(8), 135−156.
[11] Luo,Y. Z., and Meng, Y. L., 1986, Some problems on resistivity modeling for two-dimensional structures by the finite element method: Chinese J. Geophys. (in Chinese), 29(6), 613−621.
[12] Moucha, R., and Bailey, R. C., 2004, An accurate and robust multigrid algorithm for 2D forward resistivity modelling: Geophysical Prospecting, 52(3), 197−212.
[13] Pan, K. J., and Tang, J. T., 2013, Optimized selection of discrete wavenumbers for inverse Fourier transform in 2.5D DC resistivity modeling: Journal of Central South University (Science and Technology) (in Chinese), 44(7), 2819−2826.
[14] Pan, K. J., and Tang, J. T., 2014, 2.5D and 3D DC resistivity modelling using an extrapolation cascadic multigrid method: Geophys. J. Int., 197(3), 1459−1470.
[15] Pan, K. J., Tang, J. T., Hu, H. L., and Chen, C. M., 2012, Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling: Chinese J. Geophys. (in Chinese), 55(8), 2769−2778.
[16] Ren, Z. Y., and Tang, J. T., 2009, Finite element modeling of 3D DC resistivity using locally refined unstructured meshes: Chinese J. Geophys. (in Chinese), 52(10), 2627−2634.
[17] Rijo, L., 1977, Modeling of electric and electromagnetic data: PD. University of Utah.
[18] Ruan, B. Y., and Xu, S. Z., 1998, FEM for modeling resistivity sounding on 2D geoelectric model with line variation of conductivity with in each block: Earth Science-Journal of China University of Geoscience(in Chinese), 23(3), 303−307.
[19] Rücker, C., Günther, T., and Spitzer, K., 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modeling: Geophys. J. Int., 166(2), 495−505.
[20] Rucker, D. F., Loke, M. H., Levitt, M. T., and Noonan, G. E., 2010, Electrical resistivity characterization of an industrial site using long electrodes: Geophysics, 75(4), WA95−WA104.
[21] Su, B. Y., Yasuhiro, F., Xu, J. L., and Song, J. Y., 2012, A model study of residual oil distribution jointly using crosswell and borehole-surface electric potential methods: Applied Geophysics, 9(1), 19−26.
[22] Tang, J. T., Wang, F. Y., and Ren, Z. Y., 2010, 2.5D dc resistivity modelling by adaptive finite-element method with unstructured triangulation: Chinese J. Geophys. (in Chinese), 53(3), 708−716.
[23] Wu, X. P., Liu, Y., and Wang, W., 2015, 3D resistivity inversion incorporating topography based on unstructured meshes: Chinese J. Geophys. (in Chinese), 58(8), 2706−2717.
[24] Xiong, B., and Ruan, B. Y., 2002, A numerical simulation of 2D geoelectric section with biquadratic change of potential for resistivity sounding by the finite element method: Chinese J. Geophys. (in Chinese), 45(2), 285−295.
[25] Xu, S. Z., 1994, The Finite Element Method in Geophysics: Beijing, Science Press, Beijing.
[26] Ye, Y. X., Li, Y. G., Deng, J. Z., and Li, Z. L., 2014, 2.5D induced polarization forward modeling using the adaptive finite-element method: Applied Geophysics, 11(4), 500−507.
[27] Zhang, Z. Y., and Liu, Q. C., 2013, 2D MT numerical simulation using FEM based on bitree grid: Oil Geophysical Prospecting (in Chinese), 48(3), 482−487.
[28] Zhao, D. D., Zhang, Q. J., Dai, S. K., Chen, L. W., and Li, K., 2015, Fast inversion for two-dimensional direct current resistivity method based on Gauss-Newton method: The Chinese Journal of Nonferrous Metals(in Chinese), 25(6), 1662−1671.
[29] Zhou, X. X., Zhong, B. S., Yan, Z. Q., and Jiang, Y. L., 1983, Point-source two-dimensional electrical forward finite element method: Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 3, 19−40.
[30] Zou, G. H., Liang, H. Q., and Geng, M., 2014, Finite element 2.5D direct current resistivity modeling based on quadtree mesh: Science& Technology Review(in Chinese), 32(4/5), 100−104.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[4] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[5] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[6] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[7] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[8] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[9] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[10] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[11] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[12] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[13] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[14] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[15] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司