APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 267-278    DOI: 10.1007/s11770-016-0561-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于剪枝贝叶斯神经网络的电阻率成像非线性反演
江沸菠1,2,戴前伟2,董莉2,3
1. 物理与信息科学学院,湖南师范大学,长沙 410081
2. 地球科学与信息物理学院,中南大学,长沙 410083
3. 信息科学与工程学院,湖南涉外经济学院,长沙 410083
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
Jiang Fei-Bo1,2, Dai Qian-Wei2, and Dong Li2,3
1. College of Physics and Information Science, Hunan Normal University, Changsha 410081, China.
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
3. Department of Information Science and Engineering, Hunan International Economics University, Changsha 410205, China.
 全文: PDF (792 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对传统神经网络在电阻率成像反演中存在的过拟合和易陷入局部极值等问题,提出了一种基于剪枝贝叶斯神经网络(PBNN)的非线性反演算法和一种基于K-medoids聚类的样本设计方法。在基于K-medoids聚类的样本设计方法中,利用观测数据的聚类结果提供先验信息构造神经网络的训练样本,从而有针对性地指导神经网络的训练过程;剪枝贝叶斯神经网络是在贝叶斯正则化的基础上,通过评估各隐节点对反演结果的影响来自适应确定神经网络的隐层结构,根据小样本条件下训练样本的先验分布特征,选择了基于广义平均的超参数αk 来引导剪枝过程。通过与地球物理领域内其它常用的自适应正则化方法相比较,验证了本文算法的有效性。理论数据和实测数据反演的结果表明:该方法能够较好地抑制神经网络训练过程中噪声的影响,提高网络的泛化能力,其反演结果优于BPNN反演、RBFNN反演和RRBFNN反演以及传统的最小二乘反演。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
江沸菠
戴前伟
董莉
关键词电阻率成像   贝叶斯神经网络   正则化   非线性反演   K-medoids聚类     
Abstract: Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Key wordsElectrical resistivity imaging   Bayesian neural network   regularization   nonlinear inversion   K-medoids clustering   
收稿日期: 2015-01-17;
基金资助:

本研究由国家自然科学基金资助项目(编号:41374118)、教育部博士点基金资助项目(编号:20120162110015)、中国博士后科学基金资助项目(编号:2015M580700)、湖南省科技计划资助项目(编号:2015JC3067)和湖南省教育厅科研优秀青年资助项目(编号:15B138)。

引用本文:   
江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
JIANG Fei-Bo,DAI Qian-Wei,DONG Li. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks[J]. APPLIED GEOPHYSICS, 2016, 13(2): 267-278.
 
[1] Bensaid, A. M., Hall, L. O., Bezdek, J. C., et al., 1996, Validity-guided (re) clustering with applications to image segmentation: Fuzzy Systems, IEEE Transactions on, 4(2), 112−123.
[2] Calderón-Macías, C., Sen, M. K., and Stoffa, P. L., 2000, Artificial neural networks for parameter estimation in geophysics: Geophysical Prospecting, 48(1), 21−47.
[3] Chen, S., Chng, E., and Alkadhimi, K., 1996, Regularized orthogonal least squares algorithm for constructing radial basis function networks: International Journal of Control, 64(5), 829−837.
[4] Chen, X. B., Zao, G. Z., Tang, J., et al., 2005, An adaptive regularized inversion algorithm for magnetotelluric data:Chinese Journal Geophysics, 48(4), 937−946.
[5] Chen, X., Yu, P., Zhang, L. L., et al., 2011, Adaptive regularized synchronous joint inversion of MT and seismic data: Chinese Journal Geophysics, 54(10), 2673−2681.
[6] Dai, Q. W., and Jiang, F. B., 2013, Nonlinear inversion for electrical resistivity tomography based on chaotic oscillation PSO-BP algorithm:The Chinese Journal of Nonferrous Metals, 23(10), 2897−2904.
[7] El-Qady, G., and Ushijima, K., 2001, Inversion of DC resistivity data using neural networks: Geophysical Prospecting, 49(4), 417−430.
[8] Gribenko, A., and Zhdanov, M., 2007, Rigorous 3D inversion of marine CSEM data based on the integral equation method: Geophysics, 72(2), WA73−WA84.
[9] Hecht-Nielsen, R., 1988, Neurocomputing: picking the human brain: Spectrum, IEEE, 25(3), 36−41.
[10] Ho, T. L., 2009, 3-D inversion of borehole-to-surface electrical data using a back-propagation neural network: Journal of Applied Geophysics, 68(4), 489−499.
[11] Lesur, V., Cuer, M., Straub, A., et al., 1999, 2-D and 3-D interpretation of electrical tomography measurements, Part 2: The inverse problem: Geophysics, 64(2), 396−402.
[12] Liu, M., Liu, X., Wu, M., et al., 2011, Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model: Computers & Geosciences, 37(10), 1642 −1652.
[13] Loke, M., and Barker, R., 1995, Least-squares deconvolution of apparent resistivity pseudosections: Geophysics, 60(6), 1682−1690.
[14] MacKay, D. J., 1992, Bayesian interpolation: Neural computation, 4(3), 415−447.
[15] Maiti, S., Erram, V. C., Gupta, G., et al., 2012, ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India): Journal of Hydrology, 46(4), 294−308.
[16] Neyamadpour, A., Taib, S., and Wan Abdullah, W. A. T., 2009, Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application: Computers & Geosciences, 35(11), 2268−2274.
[17] Park, H. S., and Jun, C. H., 2009, A simple and fast algorithm for K-medoids clustering: Expert Systems with Applications, 36(2), 3336−3341.
[18] Pidlisecky, A., and Knight, R., 2008, FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code: Computers & Geosciences, 34(12), 1645−1654.
[19] Shima, H., 1992, 2-D and 3-D resistivity image reconstruction using crosshole data: Geophysics, 57(10), 1270−1281.
[20] Srinivas, Y., Raj, A. S., Oliver, D. H., et al., 2012, A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion: Geoscience Frontiers, 3(5), 729−736.
[21] Xu, H. L., and Wu, X. P., 2006, 2_D resistivity inversion using the neural network method:Chinese Journal Geophysics, 49(2), 584−589.
[22] Zhang, L. Y., and Liu, H. F., 2011, The application of ABP method in high-density resistivity method inversion: Chinese Journal Geophysics, 54(1), 227−233.
[1] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[2] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[3] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[4] 熊杰, 张涛. 二维磁法数据多目标粒子群反演算法[J]. 应用地球物理, 2015, 12(2): 127-136.
[5] 刘金钊, 柳林涛, 梁星辉, 叶周润. 利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演[J]. 应用地球物理, 2015, 12(2): 137-146.
[6] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[7] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[8] 冯飞, 王德利, 朱恒, 程浩. 三维曲波变换L1范数约束稀疏反演一次波估计方法研究[J]. 应用地球物理, 2013, 10(2): 201-209.
[9] 林峰, 王祝文, 李静叶, 张雪昂, 江玉龙. 低信噪比核磁共振T2谱反演算法研究[J]. 应用地球物理, 2011, 8(3): 233-238.
[10] 王守东. 基于反演的衰减补偿方法[J]. 应用地球物理, 2011, 8(2): 150-157.
[11] 魏超, 李小凡, 郑晓东. 基于群体搜索的串行蒙特卡罗反演方法的并行算法[J]. 应用地球物理, 2010, 7(2): 127-134.
[12] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司