APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 145-155    DOI: 10.1007/s11770-016-0538-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
陆检与海底的耦合作用及其校正方法
张保庆1,2,3,周辉1,李国发1,郭建卿3
1. 油气资源与探测国家重点实验室,中国石油大学(北京),北京102249
2. CNPC物探重点实验室,中国石油大学(北京),北京102249
3. 东方地球物理公司研究院大港分院,天津 300280
Geophone-seabed coupling effect and its correction
Zhang Bao-Qing1,2,3, Zhou Hui1,2, Li Guo-Fa1,2, and Guo Jian-Qing3
1. State Key Laboratory of Petroleum Resource and Prospecting (China University of Petroleum), Beijing 102249, China.
2. Key Laboratory of Geophysical Exploration of China National Petroleum Corporation, China University of Petroleum (Beijing), Beijing 102249, China.
3. BGP Dagang Branch, PetroChina, Tianjin 300280, China.
 全文: PDF (2363 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 海底电缆双检采集是利用水检和陆检对海水层鸣震的响应极性相反,通过水、陆检数据的合并处理来消除海水层的鸣震,进而拓展了数据的频带范围,提高了资料的保真性和分辨率,而得到了广泛应用。但海底电缆双检资料中的陆检数据,由于受洋流、海底地形和施工工艺等的影响,很难保证其与海底的良好耦合,因而受耦合系统传输函数的影响比较大,造成水、陆检数据在振幅、频率、相位等方面的差异,降低了陆检数据的信噪比,影响了双检地震数据的合并处理效果。而海底电缆双检中的水检资料检测的是海水压力的变化,与海底不存在耦合问题,因而水检数据信噪比往往比较高。本文首先给出了陆检与海底耦合系统传输函数的数学表达式,然后利用水检数据作为约束条件估算出了陆检与海底耦合系统的传输函数,并利用估算出的传输函数对陆检数据进行了耦合校正处理,解决了陆检与海底的耦合效应对陆检数据的振幅、相位等的影响,提高了陆检数据的信噪比,取得了较好的应用效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张保庆
周辉
李国发
郭建卿
关键词海底电缆双检数据   陆检-海底耦合系统的传输函数   耦合校正     
Abstract: By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation, the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation, broaden the frequency bandwidth, and improve both the resolution and fidelity of the seismic data. It is thus widely used in industry. However, it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow, seafloor topography, and field operations; therefore, geophone data are seriously affected by the transfer function of the geophone-seabed coupling system. As a result, geophone data frequently have low signal-to-noise ratios (S/N), which causes large differences in amplitude, frequency, and phases between geophone and hydrophone data that severely affect dual-sensor summation. In contrast, the hydrophone detects changes in brine pressure and has no coupling issues with the seabed; thus, hydrophone data always have good S/N. First, in this paper, the mathematical expression of the transfer function between geophone and seabed is presented. Second, the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces, and finally, the coupling correction based on the estimated transfer function is implemented. Using this processing, the amplitude and phase differences between geophone and hydrophone data are removed, and the S/N of the geophone data are improved. Synthetic and real data examples then show that our method is feasible and practical.
Key wordsOBC Dual-sensor   Transfer function of geophone-seabed coupling system   Coupling correction   
收稿日期: 2015-11-24;
基金资助:

本研究由中国石油集团东方地球物理勘探有限责任公司资助。

引用本文:   
张保庆,周辉,李国发等. 陆检与海底的耦合作用及其校正方法[J]. 应用地球物理, 2016, 13(1): 145-155.
Zhang Bao-Qing,Zhou Hui,Li Guo-Fa et al. Geophone-seabed coupling effect and its correction[J]. APPLIED GEOPHYSICS, 2016, 13(1): 145-155.
 
[1] Barr, F. J., and Sanders, J. I., 1989, Attenuation of water-column reverberations using pressure and velocity detectors in a water-bottom cable: 59th Annual International Meeting, SEG, Expanded Abstracts, 653−656.
[2] Barr, F. J., 1998, Method for correction dual sensor data for imperfect geophone coupling using production seismic data: U.S. Patent 5724306.
[3] Barr, F.J., Paffenholz, J., and Rabson, W., 1996, The dual-sensor ocean-bottom cable method: comparative geophysical attributes, quantitative geophone coupling analysis and other recent advances: 66th Annual International Meeting, SEG, Expanded Abstracts, 21-23.
[4] Dragoset, B., and Barr, F. J., 1994, Ocean-bottom cable Dual-Sensor scaling: 64th Annual International Meeting, SEG, Expanded Abstracts, 857−860.
[5] Drijkoningen, G. G., Redemakers, F., Slobe, E. C., et al., 2006, A new elastic model for ground coupling of geophones with spikes: Geophysics, 71(2), 9−17.
[6] Gaiser, J., Barr, F., and Paffenholz, J., 2002a, Vertical component coupling of OBC-data: 64th EAGE Conf. and Tech. Exhibit., Florence, Extended Abstracts, E07.
[7] Gaiser, J., Melbø A., and Barr, F., 2002b, Vector fidelity of OBC data and seafloor coupling of the vertical component: Offshore Technology Conference, 1−7.
[8] Gaiser, J., 1998, Compensating OBC data for variations in geophone coupling: 68th Annual International Meeting, SEG, Expanded Abstracts, 1429−1432.
[9] Gaiser, J., 2007, Detector coupling corrections for vector infidelity of multicomponent OBC data: Geophysics, 72(3), 67−77.
[10] Gao S.W., Zhao B., Gao X., et al. 2015, A method for OBC dual-sensor data matching: Oil Geophysical Prospecting (In Chinese), 50(1), 29−32.
[11] Krohn, C. E., 1984, Geophone ground coupling: Geophysics, 49(6), 722−731.
[12] Krohn, C. E., 1985, Geophone ground coupling: The Leading Edge, 4(4), 56−60.
[13] Landschulze, M., Mjelde, R., and Løvheim, L., 2012, Estimation of OBC coupling to the seafloor using 4C seismic data: 82ed Annual International Meeting, SEG, Expanded Abstracts, 1−5.
[14] Li, P. C., Sheng, G. T., Xie, S. L., et al., 2012, Research on geophone coupling mechanism: Equipment for Geophysical Prospecting (In Chinese), 22(4), 218−221.
[15] Shi, Z. J., Tian, G., and Dong, S. X., 2005, Match filtering of geophone coupling for high frequencies of seismic data in desert area: Geophysical Processing for Petroleum (In Chinese), 44(3), 261−263.
[16] Soubaras, R., 1996, Ocean bottom hydrophone and geo-phone processing: 66th Annual International Meeting, SEG, Expanded Abstracts, 24−27.
[17] Sun, C. Y., 1993, Discussion on the geophone-ground coupling problem: Petroleum Instruments (In Chinese), 7(4), 217−221.
[18] Vos, J., Cremers, B. B., Drijkoningen, G. G., et al., 1995, A theoretical and experimental approach to the geophone ground coupling problem based on acoustic reciprocity: 65th Annual International Meeting, SEG, Expanded Abstracts, 1003−1006.
[19] Vos, J., Drijkoningen, G. G., and Fokkema, J. T., 1999, Sensor coupling in acoustic media using reciprocity: Journal of the Acoustic Society of America, 105(4), 2252−2260.
[20] Washburn, H., and Miley, H., 1941, The effect of the placement of a seismometer on its response characteristics: Geophysics, 6(2), 116−131.
[21] Wei, J.D., 2013, The vibration mechanics explanation for ground-geophone coupling effect, mode identification and its impacting to seismic data and eliminating: Progress In Geophysics (In Chinese), 28(4), 1983−1995.
[22] Zhang, H. J., Chen, H.L., Liang B.J, et al., 2014, A method to improve geophone coupling in OBC exploration: 84th Annual International Meeting, SEG, Expanded Abstracts, 249−253.
[23] Zhang, W. B., and Zhu, G. M., 2005, Analysis and application of pressure and vertical of components of the ocean bottom cable: Journal of Earth Sciences and Environment (In Chinese), 27(1), 49−52.
[24] Zhou, B, Gong, X. D., Gao, M. H., et al., 2015, An improvement of the dual-sensor summation technique for cross-ghosting from OBC and its application: China Offshore Oil and Gas (In Chinese), 27(1), 49−52.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司