APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 166-178    DOI: 10.1007/s11770-016-0532-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析
李生杰1,2,邵雨3,陈旭强1,2
1. 油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249
2. 中石油物探重点实验室,中国石油大学(北京),北京 102249
3. 中国石油 新疆油田分公司 勘探开发研究院,新疆 克拉玛依 83400
Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs
Li Sheng-Jie1,2, Shao Yu3, and Chen Xu-Qiang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Lab of China University of Petroleum (Beijing), Beijing 102249, China.
3. Research Institute of Exploration and Development, Xinjiang Oilfield, PetroChina, Karamay, Xinjiang 83400, China.
 全文: PDF (813 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对非均质性较强的碳酸盐岩储层,综合各向异性自相容近似理论与差分等效介质理论建立了一种各向异性岩石物理弹性参数计算模型。通过对碳酸盐岩孔隙结构实验结果分析,提出了碳酸盐岩弹性参数计算的孔隙结构模型。综合使用各向异性等效介质理论与碳酸盐岩孔隙结构模型,给出了碳酸盐岩非均质储层弹性参数计算的实现方法。通过对比灰岩样品测试数据与理论模型计算结果,表明本文提出的等效弹性理论模型能够描述碳酸岩盐储层速度与孔隙度变化关系,可作为碳酸盐岩储层地震数据解释的基本依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李生杰
邵雨
陈旭强
关键词各向异性   岩石物理   孔隙结构   弹性模量   碳酸盐岩     
Abstract: We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.
Key wordsAnisotropy   rock physics   pore structure   modulus   carbonates   
收稿日期: 2016-01-01;
基金资助:

本研究由国家自然科学基金项目(编号:41274136)资助。

引用本文:   
李生杰,邵雨,陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
Li Sheng-Jie,Shao Yu,Chen Xu-Qiang. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs[J]. APPLIED GEOPHYSICS, 2016, 13(1): 166-178.
 
[1] Agersborg, R. T., Hohansen, A., and Jakobsen, M., 2005, The T-matrix approach for carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1597-1600.
[2] Anselmetti, F., and Ebrili, G. P., 1999, The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density log: AAPG Bulletin, 83(3), 450-466.
[3] Asseffa, S., McCann, C., and Sothcott, J., 2003, Velocity of compressional and shear waves in limestones: Geophysical Prospecting, 51(1), 1-13.
[4] Brown, R., and Korringa, I., 1975, On the dependence of elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608-616.
[5] Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech. Phys. Solid, 13(4), 223-227.
[6] Carcione, J. M., and Avseth, P., 2015, Rock-physics templates for clay-rich source rocks: Geophysics, 80(5), D480-500.
[7] Castagna, J., Batzle, M., and Eastwood, R., 1985, Relationships between compressional-wave and shear-wave velocity in clastic silicate rocks: Geophysics, 50(4), 571-581.
[8] Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: AAPG Bulletin, 54(2), 207-244.
[9] Christensen, R. M., 2005, Mechanics of composite materials: Wiley, New York, 31-71.
[10] Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture: AAPG Bulletin, 46(1), 108-121.
[11] Eberli, G. P., Baechle, G., Anselmetti, F., Incze, M., Dong, W., Tura, A., and Saparkman, G., 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge, 22(7), 654-660.
[12] Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problem: Proc. Roy. Soc, A241(1226), 376-396.
[13] Hornby, B. E., Schwartz, M., and Hundson, A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570-1583.
[14] Huang, H., Stewart, R. R., Sil, S., and Dyaur, N., 2015, Fluid substitution effect on seismic anisotropy: J. Geophys. Res, 120(2), 850-863.
[15] Hudson, J. A., 1980, Overall properties of a cracked soild: Mathematical Proceedings of the Cambridge Philosophical Society, 88(2), 371-384.
[16] Keys R. G., and Xu, S., 2002, An approximation for the Xu-White velocity model. Geophysics, 67(5), 1406-1414.
[17] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31(6), 355-369.
[18] Kumar M., and Han, De-hua, 2005, Pore shape effect on elastic properties of carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, RP1.3, 1477-1480.
[19] Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media:Part I: Theoretical formulations: Geophysics, 39(5), 587-606.
[20] Landro, M., 2015, Aspect ratio histograms of 3D ellipsoids and 2D ellipses—Analytical relations and numerical examples: Geophysics, 80(2), D429-D440.
[21] Li, J. Y., and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Appl. Geophys., 10(1), 1-13.
[22] Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG Bulletin, 79(9), 1275-1300.
[23] Mavko, G., Mukerkji T., and Dvorkin, J., 2001, The rock physics handbook: Tools for seismic analysis inporous media: Cambridge University Press, New York, 169-224.
[24] Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., and Yven B., 2015, Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology, J. Geophys. Res, 120, 790-811.
[25] Walpole, L. J., 1969, On overall elastic moduli of composite materials: J. Mech. Phys. Sol., 17(4), 235-251
[26] Weger, R. J., Baechle, G. T., Masaferro, J. L., and Everli. G. P., 2004, Effect of porestructure on sonic velocity in carbonate: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1774-1777.
[27] Willis, J. R., 1977, Bounds and self-consistent estimates for the overall properties of anisotropic composites: J. Mech. Phys. Solids, 25(3), 185-202.
[28] Xu S., and Payne, M. A., 2009, Modeling elastic Properties in carbonate rocks: The Leading Edge, 28(1), 66-74.
[29] Xu, S., and White, R. E., 1995, A new velocity model for shear-wave velocity prediction: Geophysical Prospecting, 43(1), 91-118.
[30] Yu, H., Ba, J., Carcione, J., Li, J. S., Tang, G., Zhang, X. Y., He, Z. H., and Ouyang, H., 2014, Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection: Appl. Geophys., 11(1), 9-22.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[3] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[6] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[7] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[8] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[9] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[10] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[11] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[12] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[13] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[14] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[15] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司