APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 60-68    DOI: 10.1007/s11770-011-0274-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于静主元消元法的频率域波动方程正演
宋建勇1,郑晓东1,张研1,徐基祥1,秦臻1,宋雪娟1
1. 中国石油勘探开发研究院物探技术研究所,北京 100083
Frequency domain wave equation forward modeling using gaussian elimination with static pivoting
Song Jian-Yong1, Zheng Xiao-Dong1, Zhang Yan1, Xu Ji-Xiang1, Qin Zhen1, and Song Xue-Juan1
1. Research Department of Geophysics, Research Institute of Petroleum Exploration and Development, Beijing 10083, China.
 全文: PDF (1265 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 频率域波动方程正演是求解一个大型线性稀疏方程组问题,其受到计算效率和内存存储问题的限制。常规的高斯消元法不能满足大型数据的并行计算,本文提出基于静主元消元法(GESP)进行稀疏矩阵LU分解和多炮有限差分正演,该方法不仅提高了稳定性,更有利于单频点内LU分解的分布式并行计算。通过Marmousi模型模拟试验,单频波场和转化到时间域地震剖面的试验表明模拟精度和计算效率得到提高,节约并充分利用内存,为波形反演奠定基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋建勇
郑晓东
张研
徐基祥
秦臻
宋雪娟
关键词静主元消元法   频率域波动方程正演   单频分布式并行     
Abstract: Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source fi nite-difference modeling.The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point.We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational effi ciency and saves and makes full use of memory. This method can lay the basis for waveform inversion.
Key wordsGaussian elimination with static pivoting   frequency-domain wave equation forward modeling   single-frequency distributed parallel   
收稿日期: 2010-03-30;
基金资助:

国家重大专项海相碳酸盐岩储层预测课题(编号:2008ZX05004-006)。

引用本文:   
宋建勇,郑晓东,张研等. 基于静主元消元法的频率域波动方程正演[J]. 应用地球物理, 2011, 8(1): 60-68.
SONG Jian-Yong,ZHENG Xiao-Dong,ZHANG Yan et al. Frequency domain wave equation forward modeling using gaussian elimination with static pivoting[J]. APPLIED GEOPHYSICS, 2011, 8(1): 60-68.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: Journal of Computational Physics, 114, 185 - 200.
[2] Bleibinhaus, F., Hole, J. A., Ryberg, T., and Fuis, G., 2007, Structure of the California coast ranges and San Andreas fault at SAFOD from seismic waveform inversion and reflection imaging: Journal of Geophysical Research, 112, B06315.
[3] Dablain, M. A., 1986, The application of higher order for the differencing to the scalar wave equation: Geophysics, 51, 54 - 66.
[4] Demmel, J. W., 1997, Applied numerical linear algebra: Society for Industrial and Applied Mathematics, USA,
[5] Gao, F., Levander, A., Pratt, R. G., Zelt, C. A., and Fradelizio, G. L., 2007, Waveform tomography at a groundwater contamination site: Surface reflection data: Geophysics, 72, G45 - G55.
[6] Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite difference methods for frequency-domain acoustic wave modeling: Geophysical Journal International, 157, 1269 - 1296.
[7] Jo, C. H., Shin, C., and Suh, J. H., 1996, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator: Geophysics, 61, 529 - 537.
[8] Levander, A. R., 1988, Fourth-order finite difference P-SV seismograms: Geophysics, 53, 1425 - 1436.
[9] Li, X. S., and Demmel, J. W., 1998, Making sparse Gaussian elimination scalable by static pivoting: In Proceedings of SC98, High Performance Networking and Computing Conference, Orlando, USA.
[10] Li, X. S., and Demmel, J. W., 2003, SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems: ACM Trans. Mathematical Software, 29(2), 110 - 140.
[11] Malinowski, M., and Operto, S., 2008, Quantitative imaging of the Permo-Mesozoic complex and its basement by frequency domain waveform tomography of wide-aperture seismic data from the Polish Basin: Geophysical Prospecting, 56, 805 - 825.
[12] Mora, P., 1987a, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 121l - 1228.
[13] Mora, P., 1987b, Elastic wavefield inversion for low and high wavenumbers of the P- and S-wave velocities, a possible solution: in Worthington, M., Ed., Deconvolution and Inversion: Blackwell Scientific, London.
[14] Marfurt, K., 1984, Accuracy of finite-difference and finite-elements modeling of the scalar and elastic wave equation: Geophysics, 49, 533 - 549.
[15] Mulder, W. A., and Plessix, R. E., 2004, How to choose a subset of frequencies in frequency-domain finite-difference migration: Geophysical Journal International, 158, 801 - 812.
[16] Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, and P. dell’Aversana, 2004, Quantitative imaging of complex structures from multi-fold wide-aperture data: A case study: Geophysical Prospecting, 52, 625 - 651.
[17] Operto, S., Virieux, J., Amestoy, P., Giraud, L., and L’Excellent, J. Y., 2006, 3D frequency-domain finite-difference modeling of acoustic wave propagation using a massively parallel direct solver: a feasibility study: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2265 - 2269.
[18] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model: Geophysics, 64, 888 - 901.
[19] Pratt, R. G., 2004, Velocity models from frequency-domain waveform tomography: Past, present and future: The EAGE 66th Conference & Exhibition, Paris, 7 - 10 June, Z - 99.
[20] Pratt, R. G., Shin, C., and Hicks, G. H., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341 - 362.
[21] Pratt, R. G., Song, Z., and Warner, M., 1996, Two-dimensional velocity models from wide-angle seismic data by wavefield inversion: Geophysical Journal International, 124, 323 - 340.
[22] Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., and dell’Aversana, P., 2004, Multi-scale imaging of complex structures from multi-fold wide-aperture seismic data by frequency-domain full-wavefield inversions: Application to a thrust belt: Geophysical Journal International, 159, 1032 - 1056.
[23] Riyanti, C. D., Erlangga, Y. A., Plessix, R. E., Mulder, W. A., Vuik, C., and Oosterlee, C., 2006, A new iterative solver for the time-harmonic wave equation: Geophysics, 71, E57 - E63.
[24] Saenger, E. H., Gold, N., and Shapiro, A., 2000, Modeling the propagation of elastic waves using a modified finite-difference grid: Wave Motion, 31, 77 - 92.
[25] Sirgue L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69, 231 - 248.
[26] 宋建勇, 2009, 频率域波动方程波形反演研究: 中国石油大学, 北京.
[27] Scaron;tekl, I., and Pratt, R. G., 1998, Accurate viscoelastic modeling by frequency domain finite differences using rotated operators: Geophysics, 63, 1779 - 1794.
[28] Tarantola, A., 1984a, Linearized inversion of seismic reflection data: Geophys. Prosp., 32, 998 - 1015.
[29] Tarantola, A., 1984b, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259 - 1266.
[30] 殷文, 2008, 基于频率域高阶有限差分法的正演模拟及并行算法: 吉林大学学报, 38(1), 144 - 151.
[31] 都志辉, 2001, 高性能计算之并行编程技术——MPI并行程序设计: 清华大学出版社.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司