APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 48-59    DOI: 10.1007/s11770-011-0273-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
子波相位不准对反演结果的影响
袁三一1,2,王尚旭1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
Influence of inaccurate wavelet phase estimation on seismic inversion
Yuan San-Yi1,2 and Wang Shang-Xu1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Lab of Geophysical Exploration, China University of Petroleum (Beijing), Beijing 102249, China
 全文: PDF (2231 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文重点讨论在振幅谱估计准确的情况下,采用不同相位谱子波作为实际估计子波进行线性最小二乘反演,并对结果进行分析。除子波相位外,所有其它影响反演结果的因素均忽略。稀疏反射系数模型(块状波阻抗模型)反演结果表明:(1)使用不同相位谱子波进行反演,其反演结果合成的记录与原始记录都非常匹配,但反演的反射系数和声波阻抗结果与真实模型有差异;(2)反演结果的可靠程度主要与不同相位子波Z变换的根的分布有关,当估计子波与真实子波Z变换的根的分布仅在单位圆附近有差异时,反演的反射系数和声波阻抗与真实模型很接近;(3)尽管反演前后地震记录都匹配了,并且评价反演结果好坏的柯西准则或改进柯西准则(反演参数没有进行自适应处理)已经达到了最优(最小),但反演结果与真实模型仍存在较大差异。最后,针对子波相位估计不准可能导致反演效果较差这个问题,我们提出采用求L1范数、丰度、变分、柯西准则(反演参数进行了自适应处理)或/和改进柯西准则(反演参数进行了自适应处理)的最优值或次优值作为评价准则的一种解决办法,理论上得到了好的效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁三一
王尚旭
关键词相位   地震子波   反演   评价准则   根的分布     
Abstract: On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets,are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted refl ectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model;(3) although the synthetic data matches well with the original data and the Cauchy norm (or modifi ed Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm,Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modifi ed Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.
Key wordsPhase   seismic wavelet   inversion   evaluation criterion   root   
收稿日期: 2010-01-17;
基金资助:

本项研究得到国家重点基础研究发展计划(973计划)(编号:2007CB209600)和国家重大专项计划(编号:2008ZX05010-002)资助。

引用本文:   
袁三一,王尚旭. 子波相位不准对反演结果的影响[J]. 应用地球物理, 2011, 8(1): 48-59.
YUAN San-Yi,WANG Shang-Xu. Influence of inaccurate wavelet phase estimation on seismic inversion[J]. APPLIED GEOPHYSICS, 2011, 8(1): 48-59.
 
[1] Cooke, D. A., and Schneider, W. A., 1983, Generalized linear inversion of reflection seismic data: Geophysics, 48, 665 - 676.
[2] Lu, W. K., and Liu, D. Q., 2007, Frequency recovery of bandlimited seismic data based on sparse spike train deconvolution: 77th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1977 - 1980.
[3] Oldenburg, D. W., Scheuer, T., and Levy, S., 1983, Recovery of the acoustic impedance from reflection seismograms: Geophysics, 48, 1318 - 1337.
[4] Puryear, C. I., and Castagna, J. P., 2008, Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application: Geophysics, 73, 37 - 48.
[5] Sacchi, M. D., 1997, Reweighting strategies in seismic deconvolution: Geophysical Journal International, 129, 651 - 656.
[6] Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73(1), R1 - R9.
[7] Walker, C., and Ulrych, T. J., 1983, Autoregressive modeling of the acoustic impedance: Geophysics, 48(10), 1338 - 1350.
[8] Wiggins, R., 1985, Entropy guided deconvolution: Geophysics, 50(12), 2720 - 2726.
[9] Yilmaz, O., 2001, Seismic data analysis: processing, inversion, and interpretation of seismic data (Volume I): Society of Exploration Geophysicists, 162 - 211.
[10] Yuan, S. Y., and Wang, S. X., 2010, Noise attenuation without spatial assumptions about seismic coherent events: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3524 - 3528.
[11] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166 - 174.
[12] 张繁昌, 刘杰, 印兴耀等, 2008, 修正柯西约束地震盲反褶积方法: 石油地球物理勘探, 43(4), 391 - 396.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[9] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[10] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[11] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[12] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[13] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[14] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[15] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司