APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 69-78    DOI: 10.1007/s11770-011-0272-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
声波测井仪器的等效理论及其应用
苏远大1,唐晓明1,黑创1,庄春喜1
1. 中国石油大学(华东)地球资源与信息学院,山东青岛 266555
An equivalent-tool theory for acoustic logging and applications
Su Yuan-Da1, Tang Xiao-Ming1, Hei Chuang1, and Zhuang Chun-Xi1
1. China University of Petroleum (East China), Qingdao 266555, China.
 全文: PDF (1337 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在处理实际声波测井模式波数据或用模式波的频散曲线反演地层参数时,必须考虑测井仪器对频散模式波传播的影响。本文介绍了一种用具有等效弹性模量的圆柱体来模拟声波测井仪器的等效理论,并将该理论推广应用到电缆、随钻多极子声波测井。在波长大于仪器半径的前提下,将井中的多极子声场与该等效仪器模型进行声导纳/阻抗匹配,便可导出这一理论。通过数值模拟和现场资料对该理论的有效性和实用性进行了验证,验证结果证明该理论既简单又足够精确。利用该理论模型处理实际资料时,通过调整仪器等效弹性模量和半径在给定频段标定仪器的影响,而不必考虑仪器的具体材料和结构。本文以电缆偶极子声波测井现场资料的频散校正为例,进一步证明了该等效理论处理现场资料的准确性和高效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏远大
唐晓明
黑创
庄春喜
关键词等效理论   仪器模型   声导纳匹配   模式波     
Abstract: The infl uence of an acoustic logging tool on borehole guided wave propagation should be considered in the processing and inversion of the guided waves for formation acoustic property estimation. This study introduces an equivalent-tool theory that models the tool response using an elastic rod with an effective modulus and applies the theory to multipole acoustic logging for both wireline and logging while drilling (LWD) conditions.The theory can be derived by matching the tool’s acoustic impedance/conductance to that of the multipole acoustic wavefi eld around the tool, assuming that tool radius is small compared to wavelength. We have validated the effectiveness and accuracy of the theory using numerical modeling and its practicality using fi eld data. In fi eld data applications, one can calibrate the tool parameters by fi tting the theoretical dispersion curve to field data without having to consider the actual tool’s structure and composition. We use a dispersion correction example to demonstrate an appl ication of the simple theory to fi eld data processing and the validity of the processing result.
Key wordsEquivalent theory   acoustic tool modeling   impedance match   guided wave   
收稿日期: 2010-12-17;
基金资助:

中央高校基本科研业务费专项资金和国家高技术研究发展计划(编号:2007AA06Z232)联合资助。

引用本文:   
苏远大,唐晓明,黑创等. 声波测井仪器的等效理论及其应用[J]. 应用地球物理, 2011, 8(1): 69-78.
SU Yuan-Da,TANG Xiao-Ming,HEI Chuang et al. An equivalent-tool theory for acoustic logging and applications[J]. APPLIED GEOPHYSICS, 2011, 8(1): 69-78.
 
[1] Chen, S. T. and Willen, D. E., 1984, Shear wave logging in slow formations: SPWLA 25th Annual Logging Symposium transactions, 10-13 June, New Orleans, USA, Paper DD.
[2] Cheng, C. H. and Toksoz, M. N., 1981, Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs: Geophysics, 46(7), 1042 - 1053.
[3] Hsu, C. J. and Sinha, B. K., 1998, Mandrel effects on the dipole flexural mode in a borehole: J. Acoust. Soc. Am., 104(4), 2025 - 2039.
[4] Kimball, C. V., 1998, Shear slowness measurement by dispersive processing of borehole flexural mode: Geophysics, 63(2), 337 - 344.
[5] Kimball, C. V., and Marzetta, T. L., 1984, Semblance processing of borehole acoustic array data: Geophysics, 49(3), 274 - 281.
[6] Norris, A. N., 1990, The speed of a tube wave: J. Acoust. Soc. Am., 87(1), 414 - 417.
[7] Schmitt, D. P., 1988, Shear-wave logging in elastic formations: J. Acoust. Soc. Am., 84(6), 2215 - 2229.
[8] Sinha, B., Ikegami, T., Johnson, D. L. and Pabon, J., 2009, Use of an effective tool model in sonic logging data processing: U. S. Patent 7529152.
[9] Sinha, B., Vissapragada, B., Kisra, S., Sunaga, S., Yamamoto, H., Endo, T., and Valero, H. P., 2005, Optimal well completions using radial profiling of formation shear slownesses: SPE Annual Technical Conference and Exhibition, 9 - 12 October, Dallas, USA, SPE95837, 1 - 13.
[10] Tang, X. M. and Cheng, C. H., 1993, Effects of a logging tool on Stoneley waves in elastic and porous boreholes: The Log Analyst, 34(5), 46 - 56.
[11] Tang, X. M., 2003, Determining formation shear-wave transverse isotropy from borehole Stoneley-wave measurements: Geophysics, 68(1), 118 - 126.
[12] Tang, X. M. and Cheng, A., 2004, Quantitative borehole acoustic methods, Handbook of Geophysical Exploration: Seismic Exploration: Elsevier, Amsterdam, Netherlands.
[13] Tang, X. M. and Patterson, D. J., 2010, Mapping formation radial shear-wave velocity variation by a constrained inversion of borehole flexural-wave dispersion data: Geophysics, 75(6), E183 - E190.
[14] Wang, T., and Tang, X. M., 2003, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 68(5), 1749 - 1755.
[15] White, J. E., 1983, Underground sound: Elsevier, Amsterdam, Netherlands.
[16] Zheng, Y., Huang, X., Tang, X. M. and Patterson, D., 2006, Application of a new data-driven processing method to LWD and Wireline dispersive compressional and shear waveform data: SPE Annual Technical Conference and Exhibition, 24 - 27 September, San Antonio, USA, SPE103328, 1 - 10.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司