APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 37-47    DOI: 10.1007/s11770-016-0548-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
频率域航空电磁法2.5维正反演研究
李文奔,曾昭发,李静,陈雄,王坤,夏昭
吉林大学地球探测科学与技术学院,长春 130026
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data
Li Wen-Ben1, Zeng Zhao-Fa1, Li Jing1, Chen Xiong1, Wang Kun1, and Xia Zhao1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (870 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 航空电磁法被证明是一种行之有效的地球物理勘探方法。然而,目前,实测数据处理解释仍以电阻率深度转换成像技术及一维反演方法为主。然而,对二、三维复杂地电模型,一维反演往往难以得到满意的结果。虽然三维正反演能较好的解决该问题,但其计算效率难以满足海量实测数据的计算要求。因此,本文在前人研究的基础上开展了三维源二维地电模型(2.5维)的频率域航空电磁法正反演算法研究。将总场分解为一次场和二次场来消除源的奇异性,一次场在均匀全空间或层状介质中求得,二次场用等参有限元方法计算得到,利用大规模稀疏矩阵并行直接求解器计算线性方程组,有效提高了计算效率。在正演的基础上,实现了基于奇异值分解(SVD)的阻尼最小二乘反演算法,通过‘拟正演’和互换定理来计算雅克比矩阵。通过理论模型和实测数据验证了本文方法在频率域航空电磁数据正反演应用中的准确性和有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文奔
曾昭发
李静
陈雄
王坤
夏昭
关键词频率域航空电磁法   有限元方法   2.5维地电模型   阻尼最小二乘     
Abstract: Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity–depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.
Key wordsFrequency-domain airborne electromagnetic   finite element method   2.5D geo-electric model   damped least-squares method   
收稿日期: 2015-03-25;
基金资助:

本研究由2013年博士点基金项目(编号:20130061110060博导类)、国家自然科

引用本文:   
李文奔,曾昭发,李静等. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
Li Wen-Ben,Zeng Zhao-Fa,Li Jing et al. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(1): 37-47.
 
[1] Auken, E., Chistiansen, A. V., Jacobsen, B. H., et al., 2005, Piece-wise 1D laterally constrained inversion of resistivity data: Geophysical Prospecting, 53, 497−506.
[2] Brodie, R., and Sambridge, M., 2006, A holistic approach to inversion of frequency-domain airborne EM data: Geophysics, 71(6), G301−G312.
[3] Brodie, R., and Sambridge, M., 2009, Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information: Exploration Geophysics, 40, 8−16.
[4] Cai, J., Qi, Y. F., Yin, C. C., et al., 2014, Weighted Laterally-constrained inversion of frequency-domain airborne EM data: Chinese Journal of Geophysics, 57(1), 953−960.
[5] Chen, J., and Raiche, A., 1998, Inverting AEM data using a damped eigenparameter method: Exploration Geophysics, 29, 128−132.
[6] Cox, L. H., Wilson, G. A., and Zhdanov, M. S., 2010, 3D inversion of airborne electromagnetic data using a moving footprint: Exploration Geophysics, 41, 250−259.
[7] Ellis, R. G., 1988, Inversion of airborne electromagnetic data: Exploration Geophysics, 29, 121−127.
[8] Farquharson, C. G., Oldenburg, D. W., and Routh, P. S., 2003, Simultaneous 1-D inversion susceptibility and electrical conductivity: Geophysics, 68(6), 1857−1869.
[9] Huang, H. P., and Fraser, D. C., 1996, The differential parameter method for multifrequency airborne resistivity mapping: Geophysics, 61(1), 100−109.
[10] Huang, H. P., and Fraser, D. C., 2002, Dielectric permittivity and resistivity mapping using high frequency helicopter-borne EM data: Geophysics, 67(3), 727−738.
[11] Huang, H. P., and Fraser, D. C., 2003, Inversion of helicopter electromagnetic data to a magnetic conductive layered earth: Geophysics, 68(4), 1211−1223.
[12] Hu, X. Y., Peng R. H., Wu, G. J., et al., 2013, Mineral Exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China: Geophysics, 78(3), B111−B119.
[13] Leppin, M., 1992, Electromagnetic modeling of 3-D source over 2D inhomogeneities in the time domain: Geophysics, 57(8), 994−1003.
[14] Li, X. K., 2011, A MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM: PhD Thesis, China University of Geosciences, Beijing.
[15] Li, W. J., 2008, Data Processing of Frequency Domain Airborne Electromagnetic Survey: PhD Thesis, China University of Geosciences, Beijing.
[16] Liu, G. M., and Becker, A., 1992, Evaluation of terrain effects in AEM survey suing the boundary element method: Geophysics, 57(2), 272−278.
[17] Liu, Y. H., and Yin, C. C., 2013, 3D inversion for frequency-domain HEM data: Chinese Journal of Geophysics, 56(12), 4278−4287.
[18] Lugão, P. P., and Wannamaker, P. E., 1996, Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity: Geophys. J. Int., 127, 806−810.
[19] McGillivaray, P. R., Oldenburg, D. W., Ellis R. G., et al., 1994, Calculation of sensitivity for the frequency-domain electromagnetic problem: Geophys. J. Int., 116, 1−4.
[20] Nabighian, M. N., 1991, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, Geological Publishing House, 164−165.
[21] Newman, G. A., and Alumbaugh, D. L., 1995, Frequency domain modeling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting, 43, 1021−1042.
[22] Oldenburg, D. W., Haber, E., and Shekhtman R., 2013, Three Dimensional inversion of multisource time domain electromagnetic data: Geophysics, 78(1), 47−57.
[23] Raiche, A., Annetts, D., and Sugeng, F., 2001, EM target response in complex hosts: Presented at ASEG 15th Geophysical Conference and Exhibition, Brisbane.
[24] Sengpiel, K. P., 1988, Approximate inversion of airborne EM data from a multilayered ground: Geophysical Prospecting, 36(4), 446−459.
[25] Streich, R., 2009, 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics 74, F95-F105.
[26] Tan, L., 2010, 2.5D numerical simulation software developing of Frequency domain AEM: MSc Thesis, China University of Geosciences, Beijing.
[27] Tartaras, E., and Beamish, D., 2005, Laterally-constrained inversion of fixed-wing frequency-domain AEM data: Presented at 12th European Meeting of Environmental and Near Surface Geophysics, Helsinki.
[28] Unsworth, M. J., Travis, B. J., and Chave, A. D., 1993, Electromagnetic induction by a finite electric dipole source over a 2-D earth: Geophysics, 58, 198−214.
[29] Vallée, M. A., and Smith, R. S., 2009, Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints: Near Surface Geophysics, 7, 63−71.
[30] Viezzoli, A., Auken, E., and Munday T., 2009, Spatially constrained inversion for quasi 3D modeling of airborne electromagnetic data-an application for environmental in the Lower Murray Region of South Australia: Exploration Geophysics, 40, 173−183.
[31] Wang, W. P., Fang, Y. Y., and Zheng G. R, 2007, The exploration efficiency of the helicopter electromagnetic system in Longmen, Guangdong province: Geophysical & Geochemical exploration, 31(6), 546−550.
[32] Wang, Y. H., 2013, The Research on HTEM 2.5D Forward Modeling and Curve Analysis: MSc Thesis, Chendu University of Technology.
[33] Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, in Nabighian, M. N., Ed., Society of exploration geophysics, 131−311.
[34] Wilson, G. A., Raiche, A. P., and Sugeng F., 2006, 2.5D inversion of airborne electromagnetic data: Exploration Geophysics, 37, 363−371.
[35] Yin, C. C., and Hodgres, G., 2007, Simulated annealing for airborne EM inversion; Geophysics, 72(4), F189−F196.
[36] Yin, C. C., Ren, X. Y., Liu, Y. H., et al., 2015a, Review on airborne electromagnetic inversion theory and applications, Geophysics, 80(4), W17-W31.
[37] Yin, C. C., Zhang, B., Liu, Y. H., et al., 2015b, 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief: Chinese J. Geophys. (in Chinese), 58(4), 1411-1424.
[38] Yin, H. J., 2012, 2.5D forward of time-domain of airborne electromagnetic: MSc Thesis, China University of Geosciences, Beijing.
[39] Yi, M. J., and Sasaki, Y., 2015, 2-D and 3-D joint inversion of loop-loop electromagnetic and electrical data for resistivity and magnetic susceptibility: Geophys. J. Int., 203, 1085-1095.
[40] Zhou, D. Q., Tan, L., Tan, H. D., et al., 2010, Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method: Chinese Journal of Geophysics, 56(2), 421−427.
[41] Zhou, J. J., 2011, Research on Airborne Transient Electromagnetic 2.5D Forward Modeling: MSc Thesis, Central South University.
[42] Zienkiewicz, O. C., 1977, The Finite Element Method, third edition: McGraw-Hill.
[1] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[2] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[3] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 7(1): 57-65.
[4] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 6(1): 57-65.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司