APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 48-58    DOI: 10.1007/s11770-016-0534-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
航磁梯度数据化极处理及其在不同纬度地区的适用性研究
李霖1,郭华2,3,王平2,3,贾伟洁3
1. 吉林大学,长春 130026
2. 中国地质大学(北京),北京 100083
3. 中国国土资源航空物探遥感中心,北京 100083
Research on RTP aeromagnetic gradient data and its applicability in different latitudes
Li Lin1, Guo Hua2,3, Wang Ping2,3, and Jia Wei-Jie3
1. College of Geo-exploration Sciences and Technology, ilin University, Chang Chun 130026, China,
2. China University of Geosciences (Beijing), Beijing 100083, China,
3. China Aero Geophysical Survey and Remote Sensing Center, Beijing 100083, China.
 全文: PDF (1380 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文通过理论推导说明航磁梯度数据应该进行化极及如何化极才能更好地应用于地质解释,本文针对梯度数据化极前后的总梯度模和水平梯度模的异常形态特征开展研究,设计了不同纬度地区地磁场方向和地质体磁化方向相一致,以及不一致的模型, 并讨论梯度数据化极前后如何利用总梯度模和水平梯度模方法进行解释。认为在利用总梯度模方法判断地质体位置时,梯度数据或总场数据不进行化极处理的效果更好,从而尽可能地保证数据的原始真实性,利用水平梯度模在判断地质边界时需要进行化极处理才能达到预期的效果。最后通过实际数据的分析验证了本文设计的理论模型的正确性。这也为总梯度模和水平梯度模方法较好地应用于地质解释奠定了基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李霖
郭华
王平
贾伟洁
关键词航磁梯度   化极   总梯度模   水平梯度模     
Abstract: Aeromagnetic gradient data needs to be reduced to the pole so that it can be better applied to geological interpretation through theoretical derivation. In this paper, we conduct research on the morphological characteristics of the total and horizontal gradient modules before and after reduction to the pole and design models at different latitudes, with consistent and inconsistent magnetic field direction and geological body magnetization direction. We discuss how to use the total gradient module and horizontal gradient module in geological interpretation. The reduced-to-the-pole (RTP) method is required for the horizontal gradient module method but not for the total gradient module. Finally, the conclusions derived from the theoretical models are verified through analysis of real data. The position determination of a geological body using the total gradient method, gradient data, or total-field data works better without RTP, ensuring data primitive authenticity. However, the horizontal gradient module should be reduced to the pole to determine the boundary of the geological body.  Finally, the correction of the designed model is verified by actual data analysis. Both the total and horizontal gradient methods can be applied to geological interpretation.
Key words:   
基金资助:

本研究由国家“863”计划(编号:2013AA063901)资助。

引用本文:   
李霖,郭华,王平等. 航磁梯度数据化极处理及其在不同纬度地区的适用性研究[J]. 应用地球物理, 2016, 13(1): 48-58.
Li Lin,Guo Hua,Wang Ping et al. Research on RTP aeromagnetic gradient data and its applicability in different latitudes[J]. APPLIED GEOPHYSICS, 2016, 13(1): 48-58.
 
[1] Ansari, A. H., and Alamdar, K., 2009, Reduction to the pole of magnetic anomalies using analytic signal: World Applied Sciences Journal, 7(4), 405−409.
[2] Baranov, V., 1957, A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies: Geophysics, 22(2), 359−383.
[3] Baranov, V., and Naudy, H., 1964, Numerical calculation of the formula of reduction to the magnetic pole: Geophysics, 29(1), 67−79.
[4] Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: New York: Cambridge University Press.
[5] Ervin, C. P., 1976, Reduction to the magnetic pole using a fast fourier series algorithm: Computers & Geosciences, 2(2), 211−217.
[6] Godio, A., and Piro, S., 2005, Integrated data processing for archeological magnetic surveys: Society of Exploration Geophysicists, 24(11), 1138−1144.
[7] Guan, Z. N., et al, 1993, Theoretical analysis and application of the important problem in magnetic prospecting: Geological Publishing House, 76−80.
[8] Guan, Z. N., Hou, J. S., and Yao, C. L., 1996, Application of aeromagnetic gradient data in geological mapping ang metallogenetic prognosis of gold deposits: Geoscience, (in Chinese), 10(2), 239−249.
[9] Guan, Z. N., and Yao, C. L., 1997, Inversion of the total gradient modulus of magnetic anomaly due to dipping dike: Social Sciences Edition Journal of China University Geosciences (in Chinese), 22(1), 81−85.
[10] Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields: Geophysical Prospecting, 23(2), 300−312.
[11] Hansen, R. O., and Pawlowski, R. S., 1989, Reduction to pole at low latitudes by Wiener filtering: Geophysics, 54(12), 1607−1613.
[12] Huang, L. P., and Guan, Z. N., 1998, The determination of magnetic causative boundaries using total gradient modules of magnetic anomalies: Journal of East China Geological Institute (in Chinese), 21(2), 143-150.
[13] Keating, P., and Zerbo, L., 1996, An improved technique for reduction to the pole at low latitudes: Geophysics, 61(1), 131−137.
[14] Li, X. L., and Chang, S. S., 2009, Aeromagnetic gradient survey and elementary application in sandstone type uranium deposits prospecting: Uranium Geology (in Chinese), 25(6), 355−360.
[15] Li, Y. Y., and Yang, Y. S., 2009, Derivative-based normalized standard deviation of potential field data in geological contact mapping: Geological Science and Technology Information (in Chinese), 28(5), 138−142.
[16] Lin, X. X., and Ping, W., 2012, An improved method for reduction to the pole of magnetic field at low latitude —the method of frequency conversion bidirectional damping factor: Chinese Journal of Geophysics (in Chinese), 55(10), 3477−3484.
[17] Liu, J. X., Hu, H. J., Liu, C. M., Han, S. L., and Xie, X., 2006, Application of synthetical geophysical method on exploration of deep-seated resources: Geology and Exploration (in Chinese), 42(4), 71−74.
[18] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507−517.
[19] Pedersen, L. B., and Rasmussen, T. M., 1990, The gradient tensor of potential field anomalies; some implications on data collection and data processing of maps: Geophysics, 55(12), 1558−1566.
[20] Peter, H., 1986, The application of aeromagnetic gradient survey method for prospecting gold deposits in Quebec Waerdeao mining area: Foreign Geoexploration Technology (in Chinese), 31−36.
[21] Qi, M., Zhang, B. L., Fu, C., et al, 2009, Fast discovery of concealed Cu-W polymetallic deposit in central inner Monggulia by applying comprehensive exploration methods: Geology and Exploration (in Chinese), 45(6), 676−682.
[22] Silva, J. B. C., 1986, Reduction to the pole as an inverse problem and its application to low-latitude anomalies: Geophysics, 51(2), 369−382.
[23] Sun, Y. M., Li, Q. X., Xu, H. P., et al., 1995, Image processing and programming of data conversion in the geophysical data field: Jilin Science&Technology Press, Changchun, China, 10−78.
[24] Wang, J. R., and Sun, L. C., 1990, The application of resistivity medium gradient method to the exploration of ground cracks in Xi’an: Geophysical and Geochemical Exploration (in Chinese), 14(6), 473−476.
[25] Wu, W. X., Fan, W. Y., and Wang, Y. H., 2013, Determination of the magnetic source boundary based on total gradient module analysis and its prospecting significance: Geology and Exploration (in Chinese), 49(6), 1164−1169.
[26] Xian, J. A., Guo, Y. F., Liang, K. J., and Chen, K. D., 2013, Difference of the measured 3-dimension ?T gradient of air magnetic survey and conversion of the 3-dimension ?T gradient: Contributions to Geology and Mineral Resources Research (in Chinese), 28(2), 297−300.
[27] Zhang, C. D., 2006, Airborne tensor magnetic gradiometry-the latest progress of airborne magnetometric technology: Chinese Journal of Engineering Geophysics (in Chinese), 3(5), 354−361.
[1] 骆遥, 吴美平, 王平, 段树岭, 刘浩军, 王金龙, 安战锋. 航磁三轴梯度转换全张量梯度及应用[J]. 应用地球物理, 2015, 12(3): 283-291.
[2] 李淑玲, 孟小红, 郭良辉, 姚长利, 陈召曦, 李和群. 南海重磁异常特征及火成岩分布[J]. 应用地球物理, 2010, 7(4): 295-305.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司