APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 25-36    DOI: 10.1007/s11770-016-0549-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种消除源奇异性的电磁格林函数计算框架
翁爱华1,刘云鹤1,殷长春1,贾定宇2
1. 地球探测科学与技术学院,吉林大学,长春 130026
2. 中国地质科学院地球物理地球化学勘查研究院,廊坊 065000
Singularity-free Green’s function for EM sources embedded in a stratified medium
Weng Ai-Hua1, Liu Yun-He1, Yin Chang-Chun1, and Jia Ding-Yu2
1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China.
2. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China.
 全文: PDF (606 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 论文介绍了一种计算埋藏在均匀各向同性层状介质中偶极源电磁格林函数的统一框架。在该框架中,首先引入过源中心平行层界面的虚界面,该界面与其它真实界面共同构成计算区域。在计算区域中,电磁矢量位满足齐次Helmholtz方程,其解可以形式上采用上行与下行波函数或者其组合表示。为确定各层中波函数振幅,可以由源所在虚层界面上的初始振幅借助递推关系得到。虚界面上的初始振幅,进一步可以通过源所在界面上电磁场切向分量满足的不连续边界条件获得。最后,由电磁矢量位和格林函数间的微分关系,得到层状介质中任意位置处的电磁场。在上述框架中,电磁格林函数的计算过程与具体的电磁源没有关系,具有一般性。对于具体的发射源,只需要根据相应的电磁场切向分量不连续边界条件,改变源虚界面上的该不连续性谱域跃变量,并耦合到源虚界面的初始振幅系数上。上述理论被成功应用到海洋电磁勘探的格林函数计算中,其格林函数数值解采用直接数值积分方法计算,获得的电场和磁场随偏移距的变化与前人结果吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
翁爱华
刘云鹤
殷长春
贾定宇
关键词电磁法勘探   海洋电磁法   格林函数   层状介质   源奇异性     
Abstract: We present a method to unify the calculation of Green’s functions for an electromagnetic (EM) transmitting source embedded in a homogeneous stratified medium. A virtual interface parallel to layer interfaces is introduced through the source location. The potentials for Green’s function are derived by decomposing the partial wave solutions to Helmholtz’s equations into upward and downward within boundaries. The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level. The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface. Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters, whereas the kernel connected with the stratified media stays unchanged. Hence, the present method can be easily applied to EM transmitting sources with little modification. The application of the proposed method to the marine controlled-source electromagnetic method (MCSEM) demonstrates its simplicity and flexibility.
Key wordsEM   Marine EM   Green’s function   stratified medium   singularity   
收稿日期: 2015-03-13;
基金资助:

本研究由国家重大仪器研究专项(编号:2011YQ05006010)和国家自然科学基金(编号:40874050)联合资助。

引用本文:   
翁爱华,刘云鹤,殷长春等. 一种消除源奇异性的电磁格林函数计算框架[J]. 应用地球物理, 2016, 13(1): 25-36.
Weng Ai-Hua,Liu Yun-He,Yin Chang-Chun et al. Singularity-free Green’s function for EM sources embedded in a stratified medium[J]. APPLIED GEOPHYSICS, 2016, 13(1): 25-36.
 
[1] Bhattacharyya, A. K., 1994, Electromagnetic fields in multilayered structures, MA: Artech House, Boston.
[2] Börner, R. U., Ernst, O.G., and Spitzer, K., 2008, Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection: Geophysical Journal International, 173, 766-780.
[3] Chave, A. D., 1983, Numerical integration of related Hankel transforms by quadrature and continued fraction expansion: Geophysics, 48, 1671-1686.
[4] Chew, W. C., 1990, Waves and fields in inhomogeneous media: Van Nostrand Reinhold, New York.
[5] Commer, M., and Newman, G. A., 2008, New advances in three-dimensional controlled-source electromagnetic inversion: Geophysical Journal International, 172, 513-535.
[6] Constable, S., and Weiss, C., 2006, Mapping thin resistors and hydrocarbons with marine EM method: insights from 1D modeling: Geophysics, 71, G43-G51.
[7] Das, U., 1995, A reformalism for computing frequency- and time-domain EM responses of a buried, finite-loop: SEG Annual Meeting, Extended Abstracts, 811-814.
[8] Das, U., and Hoop, A., 1995, Efficient computation of apparent resistivity curves for depth profiling of a layered earth: Geophysics, 60, 1691-1697.
[9] Fu, C. M., Di, Q. Y., and Wang, M. Y., 2010, Calculate electromagnetic fields in stratified medium with layer matrix method: Journal of Chinese Geophysics (in Chinese), 53(1), 177-188.
[10] Goldman, M., 1990, Non-conventional Methods in Geoelectrical Prospecting: Ellis Horwood Ltd Publisher, New York.
[11] Harrington, R. F., 1961, Time-harmonic electromagnetic fields, MacGraw-Hill Book Co., New York.
[12] Harrington, R. F., 1983, Fields computation by moment method, Malabar, FL: Krieger, Florida.
[13] Kaufman, A. A., and Keller, G. V., 1983, Frequency and transient soundings: Elsevier, New York.
[14] Kaufman, A. A., and Keller, G. V., 1989, Induction logging: Elsevier, New York.
[15] Krivochieva, S., and Chouteau, M., 2002, Whole-space modeling of a layered earth in time-domain electromagnetic measurements: Journal of Applied Geophysics: 50, 375-391.
[16] Liu, Y. H., Liu, G. X., and Weng, A. H., 2011, Calculation of low frequency electromagnetic Green’s functions using two-level approximated discrete complex image method: Chinese Journal of Geophyscis (in Chinese), 54(4), 1114-1121.
[17] Moghadas, D., André, F., Vereecken, H., and Lambot, S., 2010, Efficient loop antenna modeling for zero-offset, off-ground electromagnetic induction in multilayered media: Geophysics, 75, WA125-WA134.
[18] Michalski, K. A., and Mosig, J.R., 1997, Multilayered media Green’s functions in integral equation formulations: IEEE Transactions on Antennas and Propagation, 45, 508-519.
[19] Nabighian, M. N., 1987, Electromagnetic methods in applied geophysics (Vol.1), SEG, Tulsa, Oklahoma.
[20] Pardo, D. and Torres-Verdín, C., 2015, Fast 1D inversion of logging-while-drilling resistivity measurements for improved estimation of formation resistivity in high-angle and horizontal wells: Geophysics, 80, E111-E124.
[21] Piao, H., 1990, Electromagnetic Soundings (in Chinese), Geological Publishing House, Beijing.
[22] Singer, B. Sh., and Atramonova, S., 2013, Vertical electric source in transient marine CSEM: Effect of 3D Inhomogeneities on the Late Time Response: 2013, 78, E173-E188.
[23] Streich, R., and Becken, M., 2011, Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions: Geophysical Prospecting, 59, 361-374.
[24] Stratton, J. A., 1941, Electromagnetic theory. MaGraw-Hill, New York.
[25] Tsang, L., Njoku, E., and Kong, J. A., 1975, Microwave thermal emission from a stratified medium with nonuniform temperature distribution: J. Appl. Phys., 46, 5127-5133.
[26] Wait, J. R., 1981, Wave propagation Theory: Pergamon Press, New York.
[27] Wait, J. R., 1982, Geo-Electromagnetism: Academic Press, Massachusetts.
[28] Wannamaker, P. E., Hohmann, G. W., and SanFilipo, W. A., 1984, Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations: Geophysics, 49(1), 60-74.
[29] Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications: Electromagnetic methods in applied geophysics (Vol.1): Society for Exploration Geophysicists, Tulsa.
[30] Weidelt, P., 2007, Guided waves in marine CSEM: Geophysical Journal International, 171, 153-176.
[31] Yla-Oijala, P., and Taskinen, M., 2003, Efficient formulation of closed-form Green’s functions for general electric and magnetic sources in multilayered media: IEEE Transactions on Antennas and Propagation, 51(8), 2106-2115.
[1] 底青云,付长民,安志国,许诚,王亚璐,王中兴. 地面电磁探测(SEP)系统集成及优化野外探测试验[J]. 应用地球物理, 2017, 14(3): 449-458.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司