APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 13-24    DOI: 10.1007/s11770-016-0530-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
复电阻率法二维数据空间反演并行算法研究
张志勇1,2,谭捍东1,2,王堃鹏1,2,林昌洪1,2,张斌3,谢茂笔1,2
1. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
2. 中国地质大学地下信息探测技术与仪器教育部重点实验室,北京100083
3. 有色金属矿产地质调查中心,北京 100012
Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space
Zhang Zhi-Yong1,2,Tan Han-Dong1,2, Wang Kun-Peng1,2, Lin Chang-Hong1,2, Zhang Bin3, and Xie Mao-Bi1,2
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
3. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, China.
 全文: PDF (845 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的复电阻率法二维正演是基于泊松方程完成的,而实际的频谱激电数据包括激电效应和电磁效应双重作用的影响,特别是频率较高时电磁效应甚至大于激电效应,因此只考虑激电效应的做法会降低反演结果的可靠性。本文的研究从麦克斯韦方程出发,引入Cole-Cole模型,同时考虑了激电效应和电磁效应,采用有限单元法实现了复电阻率法二维数值模拟。反演采用二维数据空间OCCAM方法,通过施加不同的模型光滑约束和参数界限约束,利用多排列电场数据同时反演Cole-Cole模型四个参数,既提高了反演的稳定性又降低了反演的多解性。为了提高计算效率,我们选用MPI实现了频谱激电二维正反演并行算法。通过理论模型的试算,对比串行程序和并行程序的计算结果和效率,验证了并行算法的稳定性、可靠性和高效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志勇
谭捍东
王堃鹏
林昌洪
张斌
谢茂笔
关键词复电阻率   二维反演   数据空间   Cole-Cole模型   MPI并行计算     
Abstract: Traditional two-dimensional (2D) complex resistivity forward modeling is based on Poisson’s equation but spectral induced polarization (SIP) data are the coproducts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. This is especially true under high frequencies, where the EMI effect can exceed the IP effect. 2D inversion that only considers the IP effect reduces the reliability of the inversion data. In this paper, we derive differential equations using Maxwell’s equations. With the introduction of the Cole–Cole model, we use the finite-element method to conduct 2D SIP forward modeling that considers the EMI and IP effects simultaneously. The data-space Occam method, in which different constraints to the model smoothness and parametric boundaries are introduced, is then used to simultaneously obtain the four parameters of the Cole–Cole model using multi-array electric field data. This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity. To improve the computational efficiency, message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic datasets were tested using both serial and parallel algorithms, and the tests suggest that the proposed parallel algorithm is robust and efficient.
Key wordsSpectral induced polarization   2D inversion   data-space method   Cole–Cole model   MPI parallel computation   
收稿日期: 2015-11-22;
基金资助:

本研究由国家自然科学基金项目(编号:41374078)、北京高等学校青年英才计划项目和国土资源部地质调查项目(编号:12120113086100和12120113101300)联合资助。

引用本文:   
张志勇,谭捍东,王堃鹏等. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
Zhang Zhi-Yong,Tan Han-Dong,Wang Kun-Peng et al. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space[J]. APPLIED GEOPHYSICS, 2016, 13(1): 13-24.
 
[1] Attwa, M., and Günther, T., 2013, Spectral induced polarization measurements for environmental purposes and predicting the hydraulic conductivity in sandy aquifers: Hydrology and Earth System Sciences Discussions, 10(4), 5315-5354.
[2] Avdeev, D. B., 2005, Three-dimensional electromagnetic modelling and inversion from theory to application: Surveys in Geophysics, 26(6), 767-799.
[3] Commer, M., and Newman, G. A., 2008, New advances in three-dimensional controlled-source electromagnetic inversion: Geophysical Journal International, 172(2), 513-535.
[4] Constable, C. S., Parker, R. L., and Constable, C. G., 1987, Occam’s inversion: A practical algorithm for generating a smooth models from electromagnetic sounding data: Geophysics, 52(3), 289-300.
[5] Egbert, G. D., Bennett, A. F., and Foreman, M. G.G., 1994, TOPEX/POSEIDON tides estimated using a global inverse model: Journal of Geophysical Research, 99(c12), 24821-24852.
[6] Fan, C. S., Li, T. L., and Yan, J. Y., 2012, Research and application experiment on 2.5D SIP inversion: Chinese Journal of Geophysics (in Chinese), 55(12), 4044-4050.
[7] Fan, C. S., 2013, Research on complex resistivity forward and inversion with finite element method and its application: PhD Thesis, Jilin University.
[8] Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, Complex resistivity tomography for environmental applications: Chemical Engineering Journal, 77(1), 11-18.
[9] Key, K., and Ovall, J., 2011, A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling: Geophysical Journal International, 186(1), 137-154.
[10] Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality constraint in least-squares inversion of geophysical data: Earth Planets Space, 51, 255-259.
[11] Li, Y. G., and Key, K., 2007, 2D marine controlled-source electromagnetic modeling: Part 1 - An adaptive finite-element algorithm: Geophysics, 72(2), WA51-WA62.
[12] Loke, M. H., Chambers J. E., and Ogilvy., R. D., 2006, Inversion of 2D spectral induced polarization imaging data: Geophysical Prospecting, 54(3), 287-301.
[13] McGillivray, P. R., Oldenburg, D. W., Ellis R. G., and Habashy, T. M., 1994, Calculation of sensitivities for the frequency-domain electromagnetic problem: Geophysical Journal International, 116(1), 1-4.
[14] Mitsuhata, Y., 2000, 2-D electromagnetic modeling by finite-element method with a dipole source and topography: Geophysics, 65(2), 465-475.
[15] Nabighian, M. N., 1988, Electromagnetic Methods in Applied Geophysics, vol. 1: Theory. Society of Exploration Geophysicists.
[16] Pacheco, P. S., 2011, An Introduction to Parallel Programming, Morgan Kaufann Publ. Inc.
[17] Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588-609.
[18] Revil, A., Karaoulis, M., Johnson, T., and Kemna., A., 2012, Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology: Hydrogeology Journal, 20(4), 617-658.
[19] Routh, P. S., Oldenburg, D. W., and Li, Y. G., 1998, Regularized inversion of spectral IP parameters from complex resistivity data: 68th Annual International Meeting, SEG Expanded Abstracts, 810−813.
[20] Schwartz, N., and Furman, A., 2012, Spectral induced polarization signature of soil contaminated by organic pollutant: Experiment and modeling: Journal of Geophysical Research, 117, B10203.
[21] Shin, S., Park, S., and Shin, D, 2015, Spectral-induced polarization characteristics of rock types from the skarn deposit in Gagok Mine, Taebaeksan Basin, South Korea: Environmental Earth Sciences, 73(12), 8325-8331.
[22] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65(3), 791-803.
[23] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data space method: Physics of the Earth and Planetary Interiors, 150(1-3), 3-14.
[24] Xu, K. J., 2007, Study on 2.5D complex resistivity electromagnetic forward and inversion: PhD Thesis, Jilin University.
[25] Yang, J., 2011, Environmental and Engineering Geophysics: GeologicalPublishingHouse, Beijing.
[26] Zhao, G. M., 2009, Research of complex resistivity 2.5D electromagnetic forward and inversion with topography: PhD Thesis, Jilin University.
[27] Zienkiewicz, O. C., 1977. The finite element method, McGraw-Hill Book Co.
[1] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[2] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[3] 余传涛, 刘鸿福, 张新军, 杨德义, 李自红. 从瞬变电磁响应中提取IP信息的研究[J]. 应用地球物理, 2013, 10(1): 79-87.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司