APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 1-12    DOI: 10.1007/s11770-016-0543-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
西南山区典型滑坡体时移电阻率动态监测试验研究
徐冬,胡祥云,单春玲,李睿恒
中国地质大学(武汉)地球物理与空间信息学院,地球内部多尺度成像湖北省重点实验室,武汉430074
Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography
Xu Dong1, Hu Xiang-Yun1, Shan Chun-Ling1, and Li Rui-Heng1
1. Hubei Subsurface Multiscale Imaging Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China.
 全文: PDF (1482 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 滑坡体动态监测研究聚焦于降水入渗、坡体内部水文地质条件和坡体稳定性之间的复杂耦合关系。我们选择西南山区典型滑坡体,于2013年11月和2014年8月开展时移电阻率层析成像监测工作,以滑坡体电性结构的时间-空间特性来表征地表水入渗及地下水迁移的时空分布规律,构建滑坡演化及其触发的动态过程。结合地质钻孔资料,电阻率反演模型准确划定了基岩与上覆第四系沉积物间的分界面;同时圈定了发育为潜在优先流路径的破碎带网络,推断地表水沿此路径入渗并经基岩风化裂隙水径流排泄,基覆面溶蚀软化致使滑动面逐渐贯穿。研究结果表明时移电阻率监测具备获取临滑前兆信息的潜力,能够为滑坡稳定性分析和预测预报提供准确可靠的依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐冬
胡祥云
单春玲
李睿恒
关键词时移电阻率层析成像   滑坡   监测   优先流   水文地球物理学     
Abstract: The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.
Key wordstime-lapse electrical resistivity tomography   landslide   hydrogeophysics   monitoring   preferential flow   
收稿日期: 2016-02-21;
基金资助:

本研究由国家重点基础研究发展计划(973计划,编号:2013CB733203)和国家自然科学基金(编号:41474055)联合资助。

引用本文:   
徐冬,胡祥云,单春玲等. 西南山区典型滑坡体时移电阻率动态监测试验研究[J]. 应用地球物理, 2016, 13(1): 1-12.
Xu Dong,Hu Xiang-Yun,Dan Chun-Ling et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography[J]. APPLIED GEOPHYSICS, 2016, 13(1): 1-12.
 
[1] Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J. P., and Ulrich, P., 2015, Monitoring landslide displacements with the Geocube wireless network of low-cost GPS: Engineering Geology, 195, 111-121.
[2] Bièvre, G., Jongmans, D., Winiarski, T., and Zumbo, V., 2012, Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps): Hydrological Processes, 26(14), 2128-2142.
[3] Binley, A., Cassiani, G., and Deiana, R., 2010, Hydrogeophysics: opportunities and challenges: Bollettino Di Geofisica Teorica Ed Applicata, 51(4), 267-284.
[4] Binley, A., Hubbard, S., Huisman, J., Revil, A., Robinson, D., Singha, K., and Slater, L. D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales: Water Resources Research, 51(6), 3837-3866.
[5] Bruno, F., and Martillier, F., 2000, Test Of High-Resolution Seismic Reflection And Other Geophysical Techniques On The Boup Landslide In The Swiss Alps: Surveys in Geophysics, 21(4), 335-350.
[6] Cassiani, G., Godio, A., Stocco, S., Villa, A., Deiana, R., Frattini, P., and Rossi, M., 2009, Monitoring the hydrologic behaviour of a mountain slope via time-lapse electrical resistivity tomography: Near Surface Geophysics, 7(5-6), 475-486.
[7] Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A., and Wragg, J., 2014, 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment: Near Surface Geophysics, 12(1), 61-72.
[8] Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C. V. L., Weller, A. L., Hobbs, P. R. N., and Ogilvy, R. D., 2011, Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK: Geomorphology, 125(4), 472-484.
[9] Chu, R., Ni, S., Hu, X., Bao, F., Lu, P., and Li, Z., 2014, Joint Study of the Xishancun Landslide, Sichuan, Using Seismological and Electromagnetic Methods: AGU Fall Meeting Abstracts, 1, 08.
[10] Dahlin, T., and Zhou, B., 2004, A numerical comparison of 2D resistivity imaging with 10 electrode arrays: Geophysical Prospecting, 52(5), 379-398.
[11] de Franco, R., et al., 2009, Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy): Journal of Applied Geophysics, 69(3-4), 117-130.
[12] Gasperikova, E., Hubbard, S. S., Watson, D. B., Baker, G. S., Peterson, J. E., Kowalsky, M. B., Smith, M., and Brooks, S., 2012, Long-term electrical resistivity monitoring of recharge- induced contaminant plume behavior: Journal of Contaminant Hydrology, 142-143C(6), 33-49.
[13] Gunther, T., Rucker, C., and Spitzer, K., 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography - II. Inversion: Geophysical Journal International, 166(2), 506-517.
[14] Guo, X. J., Huang, X. Y., and Jia, Y. G., 2005, Forward modeling of different types of landslides with multi-electrode electric method: Applied Geophysics, 2(1), 14-20.
[15] Hayley, K., Bentley, L. R., and Gharibi, M., 2009, Time-lapse electrical resistivity monitoring of salt- affected soil and groundwater: Water Resources Research, 45(7), 171-183.
[16] Huang, R. Q., and Li, W. L., 2009, Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China: Bulletin of Engineering Geology and the Environment, 68(3), 363-371.
[17] Huang, R. Q., Zhao, J., Ju, N., Li, G., Lee, M. L., and Li, Y., 2013, Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China: Natural Hazards, 68(2), 1021-1039.
[18] Hubner, R., Heller, K., Gunther, T., and Kleber, A., 2015, Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements: Hydrology and Earth System Sciences, 19(1), 225-240.
[19] Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., and Elwaseif, M., 2012, Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes: Water Resources Research, 48(7), W07506.
[20] Karaoulis, M., Tsourlos, P., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints: Near Surface Geophysics, 12(1), 25-34.
[21] Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations: Geophysical Journal International, 195(3), 1640- 1656.
[22] Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model: Journal of Applied Geophysics, 68(4), 522- 532.
[23] Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., and Wealthall, G. P., 2009, Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT): Comptes Rendus Geoscience, 341(10-11), 868-885.
[24] LaBrecque, D. J., and Yang, X. J., 2001, Difference Inversion of ERT Data: a Fast Inversion Method for 3-D in Situ Monitoring: Journal of Environment and Engineering Geophysics, 6(2), 83-89.
[25] Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., and Sdao, F., 2005, 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy: Geophysics, 70(3), B11-B18.
[26] Lebourg, T., Binet, S., Tric, E., Jomard, H., and El Bedoui, S., 2005, Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide: Terra Nova, 17(5), 399-406.
[27] Lebourg, T., Hernandez, M., Zerathe, S., El Bedoui, S., Jomard, H., and Fresia, B., 2010, Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach: Engineering Geology, 114(3-4), 238-250.
[28] Lee, C. C., Zeng, L. S., Hsieh, C. H., Yu, C. Y., and Hsieh, S. H., 2012, Determination of mechanisms and hydrogeological environments of Gangxianlane landslides using geoelectrical and geological data in central Taiwan: Environmental Earth Sciences, 66(6), 1641-1651.
[29] Li, S. C., Nie, L. C., Liu, B., Song, J., Liu, Z. Y., Su, M. X., and Xu, L., 2014, 3D electrical resistivity inversion using prior spatial shape constraints: Applied Geophysics, 10(4), 361-372.
[30] Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W., Chen, W., Hong, Y., and Li, R., 2013, Susceptibility evaluation and mapping of China’s landslides based on multi-source data: Natural Hazards, 69(3), 1477-1495.
[31] Loke, M. H., 2014, RES2DINVx64 ver 4.03 Rapid 2-D Resistivity & IP inversion using the least-squares method: Software Manual.
[32] Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95(8), 135-156.
[33] Loke, M. H., Dahlin, T., and Rucker, D. F., 2014, Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys: Near Surface Geophysics, 12(2007), 5-24.
[34] Martorana, R., Lombardo, L., Messina, N., and Luzio, D., 2014, Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater: Near Surface Geophysics, 12(1), 45-59.
[35] Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization: Geophysics, 73(3), G7-G17.
[36] Niesner, E., 2010, Subsurface resistivity changes and triggering influences detected by continuous geoelectric monitoring: The Leading Edge, 29(8), 952-955.
[37] Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer: Geophysics, 72(4), F177-F187.
[38] Oldenburg, D. W., and Li, Y. G., 1999, Estimating depth of investigation in dc resistivity and IP surveys: Geophysics, 64(2), 403-416.
[39] Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., and Sdao, F., 2004, High-resolution electrical imaging of the Varco d’Izzo earthflow (southern Italy): Journal of Applied Geophysics, 56(1), 17-29.
[40] Perrone, A., Lapenna, V., and Piscitelli, S., 2014, Electrical resistivity tomography technique for landslide investigation: A review: Earth-Science Reviews, 135(4), 65-82.
[41] Qi, S., Xu, Q., Lan, H., Zhang, B., and Liu, J., 2010, Spatial distribution analysis of landslides triggered by 2008. 5. 12 Wenchuan Earthquake, China: Engineering Geology, 116(1), 95-108.
[42] Revil, A., Skold, M., Karaoulis, M., Schmutz, M., Hubbard, S. S., Mehlhorn, T. L., and Watson, D. B., 2013, Hydrogeophysical investigations of the former S-3 ponds contaminant plumes, Oak Ridge Integrated Field Research Challenge site, Tennessee: Geophysics, 78(4), En29-En41.
[43] Rucker, C., Gunther, T., and Spitzer, K., 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography - I. Modelling: Geophysical Journal International, 166(2), 495-505.
[44] Shan, C., Bastani, M., Malehmir, A., Persson, L., and Engdahl, M., 2014, Integrated 2d modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden: Geophysics, 79(4), EN61- EN75.
[45] Su, L. J., Xu, X. Q., Liao, H. J., and Geng, X. Y., 2015, Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method: Proceedings of the International Symposium on Geohazards and Geomechanics (ISGG), Warwick, ENGLAND, 012026.
[46] Supper, R., Römer, A., Jochum, B., Bieber, G., and Jaritz, W., 2008, A complex geo-scientific strategy for landslide hazard mitigation – from airborne mapping to ground monitoring: Adv. Geosci., 14(14), 195-200.
[47] Thomsen, R., Sondergaard, V. H., and Sorensen, K. I., 2004, Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark: Hydrogeology Journal, 12(5), 550-562.
[48] Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., and Ponton, J., 2012, Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography: Hydrological Processes, 26(14), 2106-2119.
[49] Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Gunn, D. A., Ogilvy, R. D., and Kuras, O., 2010, Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only: Geophysical Journal International, 183(2), 543-556.
[1] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[2] 李静和,何展翔,徐义贤. 油气藏开发监测中地-井三维电磁法的数值模拟研究[J]. 应用地球物理, 2017, 14(4): 559-569.
[3] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[4] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[5] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[6] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[7] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[8] 常晓涛, 郭金运, 张永红, 王孝青. DInSAR沙漠形变监测应用研究[J]. 应用地球物理, 2011, 8(1): 86-93.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司