APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 36-47    DOI: 10.1007/s11770-011-0269-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于保角变换的双谱域相位谱估计方法及其在地震子波估计中的应用
于永才1,王尚旭1,袁三一1,戚鹏飞2
1. 中国石油大学(北京)CNPC物探重点实验室,北京 102249;
2. 中国地质大学(北京),北京 100083
Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation
Yu Yong-Cai1, Wang Shang-Xu1, Yuan San-Yi1, and Qi Peng-Fei2
1. State Key Laboratory of Petroleum Resource and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Beijing 102249, China.
2. China University of Geosciences (Beijing), Beijing 100083, China.
 全文: PDF (998 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震子波估计是地震资料处理与解释中的重要环节,它的准确与否直接关系到反褶积及反演等结果的好坏。高阶谱(双谱和三谱)地震子波估计方法是一类重要的、新兴的子波估计方法,然而基于高阶谱的地震子波估计往往因为高阶相位谱卷绕的原因,导致子波相位谱求解产生偏差,进而影响了混合相位子波估计的效果。针对这一问题,本文在双谱域提出了一种基于保角变换的相位谱求解方法。通过缩小傅里叶相位谱的取值范围,有效避免了双谱相位发生卷绕的情况,从而消除了原相位谱估计中双谱相位卷绕的影响。该方法与最小二乘法相位谱估计相结合,构成了基于保角变换的最小二乘地震子波相位谱估计方法,并与最小二乘地震子波振幅谱估计方法一起,应用到了地震资料混合相位子波估计中。理论模型和实际资料验证了该方法的有效性。同时本文将双谱域地震子波相位谱估计中保角变换的思想推广到三谱域地震子波相位谱估计中。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
于永才
王尚旭
袁三一
戚鹏飞
关键词保角变换   高阶谱   相位卷绕   地震子波估计     
Abstract: Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method.However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping infl uence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.
Key wordsconformal mapping   higher-order spectra   phase wrapping   wavelet estimation   
收稿日期: 2009-12-31;
基金资助:

国家973项目,非均质油气藏地球物理探测基础研究(编号:2007CB20960)

引用本文:   
于永才,王尚旭,袁三一等. 基于保角变换的双谱域相位谱估计方法及其在地震子波估计中的应用[J]. 应用地球物理, 2011, 8(1): 36-47.
YU Yong-Cai,WANG Shang-Xu,YUAN San-Yi et al. Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation[J]. APPLIED GEOPHYSICS, 2011, 8(1): 36-47.
 
[1] Bartelt, H., Lohmann, A. W., and Wirnitzer, B., 1984, Phase and amplitude recovery from bispectra: Applied Optics, 23(18), 3121 - 3129.
[2] Brillinger, D. R., 1977, The identification of a particular nonlinear time series system: Biometrika, 64(3), 509 - 515.
[3] 程乾生,2003, 数字信号处理:北京大学出版社, 172 - 175.
[4] Edgar, J., and Van der Baan, M., 2009, How reliable is statistical wavelet estimation? SEG Houston 2009 International Exposition and Annual Meeting, 3233 - 3237.
[5] 黄健英,李录明,罗省贤,2006, 基于高阶谱的地震子波估计:成都理工大学学报(自然科学版), 33(2), 188 - 192.
[6] Kang, M. G., Lay, K. T., and Katsaggelos, A. K., 1991, Phase estimation using the bispectrum and its application to image restoration: Optical Engineering, 30(7), 976 - 985.
[7] Lazear, G. D., 1993, Mixed-phase wavelet estimation using fourth-order cumulants: Geophysics, 58(7), 1042 - 1051.
[8] 梁昆淼,刘法,缪国庆,1995, 数学物理方法:高等教育出版社, 423 - 458.
[9] Lii, K. S., and Rosenblatt, M., 1982, Deconvolution and estimation of transfer function phase and coefficients for non-Gaussian linear processes: The Annals Statistics, 10(4), 1195 - 1208.
[10] Lu, W. K., 2005, Blind channel estimation using zero-lag slice of third-order moment: IEEE Signal Processing Letters, 12(10), 725 - 727
[11] Lu, W. K., Zhang, Y. S., Zhang, S. W., and Xiao, H. Q., 2007, Blind wavelet estimation using a zero-lag slice of the fourth-order statistics: Journal of Geophysics and Engineering, 4(1),24 - 30
[12] Marron, J. C., Sanchez, P. P., and Sullivan, R. C., 1990, Unwrapping algorithm for least-squares phase recovery from the modulo 2 bispectrum phase: Journal of the Optical Society of America A: Optics, Image Science, and Vision, 7(1), 14 - 20.
[13] Matsuoka, T., and Ulrych, T. J., 1984, Phase estimation using the bispectrum: Proceedings of the IEEE, 72(10), 1403 - 1411.
[14] Mendel, J. M., 1991, Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications: Proceedings of the IEEE, 79(3), 278 - 305.
[15] Nikias, C. L., and Petropulu, A. P., 1993, Higher-order spectra analysis: A nonlinear signal processing framework: Prentice Hall.
[16] Pan, R., and Nikias, C. L., 1987, Phase reconstruction in the trispectrum domain : IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(6), 895 - 897.
[17] Petropulu, A. P., and Pozidis, H., 1998, Phase reconstruction from bispectrum slices: IEEE Transactions on Signal Processing, 46(2), 527 - 530.
[18] Robinson, E. A., 1967, Predictive decomposition of time series with application to seismic exploration: Geophisics, 32(3), 418 - 484.
[19] Sacchi, M. D., and Ulrych, T. J., 2000, Nonminimum-phase wavelet estimation using higher order statistics: The Leading Edge, 19(1), 80 - 83.
[20] Sundaramoorthy, G., Raghuveer, M. R., and Dianat, S. A., 1990, Bispectral reconstruction of signals in noise: amplitude reconstruction issues: IEEE Transactions on Acoustics. Speech. and Signal Processing, 38(7), 1297 - 1306.
[21] Tekalp, A. M., and Erdem, A. T., 1989, Higher order spectrum factorization in one and two dimensions with applications in signal modeling and nonminimum phase system identification: IEEE Transactions on Acoustics. Speech. and Signal Processing, 37(10), 1537 - 1549.
[22] 西安交通大学高等数学系, 1996, 复变函数(第四版):高等教育出版社, 186 - 191.
[23] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166 - 174.
[24] Zhang, F., Wang, Y. H., and Li, X. Y., 2008, Mixed-phase wavelet estimation using unwrapped phase of bispectrum: 70th EAGE Conference and Exhibition.
[25] Zhang, F., Wang, Y. H., and Li, X. Y., 2009, Mixed-phase wavelet estimation using unwrapped phase of bispectrum: CPS/SEG Beijing International Geophysical Conference and Exposition.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司