APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 545-554    DOI: 10.1007/s11770-015-0519-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于双级并行的弹性波频率域全波形多尺度反演方法
李媛媛1,李振春1,张凯1,张旋2
1. 中国石油大学(华东)地球科学与技术学院,青岛 266580
2. 中国石油大学(华东)石油工程学院,青岛 266580
Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism
Li Yuan-Yuan1, Li Zhen-Chun1, Zhang Kai1, and Zhang Xuan2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China.
 全文: PDF (1898 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 弹性波场的复杂性使得反演问题非线性增强,容易陷入局部极值,需要采用合理的多尺度反演策略降低非线性。在逐频组多尺度反演的基础上引入第二级别的反演策略,即基于阻尼波场的层剥离方法,能够改善反演过程的稳定性。针对频域全波形反演计算效率低、内存占用大的问题,采用双级并行算法:(i)利用多波前大规模并行直接解法(MUMPS)软件包,多节点并行实现波场正演;(ii)基于MPI实现频组内各频率并行计算梯度和步长等,使得多尺度反演算法在提高精度的前提下,保证了计算效率,提高了算法的实用性。Overthrust模型的数值实验表明,本文反演算法能够在有效改善反演稳定性的前提下,高效地获得精度较高的反演结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李媛媛
李振春
张凯
张旋
关键词频率域反演   多尺度   逐频组   层剥离   双级并行     
Abstract: The complexity of an elastic wavefield increases the nonlinearity of inversion. To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping  method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low-frequency seismic data.
Key wordsFrequency-domain inversion   multiscale   frequency groups   layer stripping   dual-level parallelism   
收稿日期: 2015-02-18;
基金资助:

本研究由国家自然科学基金(编号:41374122)资助。

引用本文:   
李媛媛,李振春,张凯等. 基于双级并行的弹性波频率域全波形多尺度反演方法[J]. 应用地球物理, 2015, 12(4): 545-554.
Li Yuan-Yuan,Li Zhen-Chun,Zhang Kai et al. Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism[J]. APPLIED GEOPHYSICS, 2015, 12(4): 545-554.
 
[1] Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2008, Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data: Geophysics, 73(5), VE101−VE117.
[2] Brenders, A. J., and Pratt, R. G., 2007, Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model: Geophysical Journal International, 168(1), 133-151.
[3] Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105−WCC118.
[4] Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457-1473.
[5] Cao, S. H., and Chen, J. B., 2014, Studies on complex frequencies in frequency domain full waveform inversion: Chinese J. Geophys. (in Chinese), 57(7), 2302−2313.
[6] Min, D. J., Shin, C., Kwon, B. D., and Chung, S., 2000, Improved frequency-domain elastic wave modeling using weighted-averaging difference operators: Geophysics, 65(3), 884-895.
[7] Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, L., and Virieux, J., 2013, A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice: The Leading Edge, 32(9), 1040−1054.
[8] Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., and Aversana, P. D., 2004, Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study: Geophysical Prospecting, 52(6), 625 -651.
[9] Pageot, D., Operto, S., Vallée, M., Brossier, R., and Virieux, J., 2013, A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging: Geophysical Journal International, 193(3), 1479−1505.
[10] Pratt, R. G., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 2: elastic wave-equation method: Geophysical Prospecting, 38(3), 311−329.
[11] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[12] Pratt, R. G., and Shin, C., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341−362.
[13] Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method: Geophysical Prospecting, 38(3), 287−310.
[14] Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain: Geophysical Journal International, 173(3), 922−931.
[15] Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace-Fourier domain: Geophysical Journal International, 177(3), 1067−1079.
[16] Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield: Geophysics, 71(3), R31−R42.
[17] Shin, C., Yoon, K., Marfurt, K. J., Park, K., Yang, D., Lim, H. Y., Chung, S., and Shin, S., 2001, Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion: Geophysics, 66(6), 1856−1863.
[18] Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69(1), 231−248.
[19] Song, J. Y., Zheng, X. D., Qin, Z., and Su, B. Y., 2011, Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method: Applied Geophysics, 8(4), 303−10.
[20] Sourbier, F., Operto, S., and Virieux, J., 2007, A massively parallel frequency-domain full-waveform inversion algorithm for imaging acoustic media: application to a dense OBS data set: 77st Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1893−1897.
[21] Tarantola, A., 1984, Linearized inversion of seismic reflection data: Geophysical prospecting, 32(6), 998−1015.
[22] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1−WCC26.
[23] Zhang, Q. J., Dai, S. K., Chen, L. W., Li, K., Zhao, D. D., and Huang, X. X., 2015, Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography: Applied Geophysics, 12(3), 378−388.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[3] 陈双全, 曾联波, 黄平, 孙绍寒, 张琬璐, 李向阳. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
[4] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[5] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[6] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[7] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[8] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
[9] 潘纪顺, 徐朝繁, 张先康, 赵平, 田晓峰. 2D多尺度混合优化地球物理反演方法及其应用[J]. 应用地球物理, 2009, 6(4): 363-374.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司