Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism
Li Yuan-Yuan1, Li Zhen-Chun1, Zhang Kai1, and Zhang Xuan2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China.
Abstract:
The complexity of an elastic wavefield increases the nonlinearity of inversion. To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low-frequency seismic data.
Li Yuan-Yuan,Li Zhen-Chun,Zhang Kai et al. Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism[J]. APPLIED GEOPHYSICS, 2015, 12(4): 545-554.
[1]
Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2008, Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data: Geophysics, 73(5), VE101−VE117.
[2]
Brenders, A. J., and Pratt, R. G., 2007, Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model: Geophysical Journal International, 168(1), 133-151.
[3]
Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105−WCC118.
[4]
Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457-1473.
[5]
Cao, S. H., and Chen, J. B., 2014, Studies on complex frequencies in frequency domain full waveform inversion: Chinese J. Geophys. (in Chinese), 57(7), 2302−2313.
[6]
Min, D. J., Shin, C., Kwon, B. D., and Chung, S., 2000, Improved frequency-domain elastic wave modeling using weighted-averaging difference operators: Geophysics, 65(3), 884-895.
[7]
Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, L., and Virieux, J., 2013, A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice: The Leading Edge, 32(9), 1040−1054.
[8]
Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., and Aversana, P. D., 2004, Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study: Geophysical Prospecting, 52(6), 625 -651.
[9]
Pageot, D., Operto, S., Vallée, M., Brossier, R., and Virieux, J., 2013, A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging: Geophysical Journal International, 193(3), 1479−1505.
[10]
Pratt, R. G., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 2: elastic wave-equation method: Geophysical Prospecting, 38(3), 311−329.
[11]
Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[12]
Pratt, R. G., and Shin, C., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341−362.
[13]
Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method: Geophysical Prospecting, 38(3), 287−310.
[14]
Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain: Geophysical Journal International, 173(3), 922−931.
[15]
Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace-Fourier domain: Geophysical Journal International, 177(3), 1067−1079.
[16]
Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield: Geophysics, 71(3), R31−R42.
[17]
Shin, C., Yoon, K., Marfurt, K. J., Park, K., Yang, D., Lim, H. Y., Chung, S., and Shin, S., 2001, Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion: Geophysics, 66(6), 1856−1863.
[18]
Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69(1), 231−248.
[19]
Song, J. Y., Zheng, X. D., Qin, Z., and Su, B. Y., 2011, Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method: Applied Geophysics, 8(4), 303−10.
[20]
Sourbier, F., Operto, S., and Virieux, J., 2007, A massively parallel frequency-domain full-waveform inversion algorithm for imaging acoustic media: application to a dense OBS data set: 77st Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1893−1897.
[21]
Tarantola, A., 1984, Linearized inversion of seismic reflection data: Geophysical prospecting, 32(6), 998−1015.
[22]
Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1−WCC26.
[23]
Zhang, Q. J., Dai, S. K., Chen, L. W., Li, K., Zhao, D. D., and Huang, X. X., 2015, Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography: Applied Geophysics, 12(3), 378−388.