APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 533-544    DOI: 10.1007/s11770-015-0518-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用
王康宁1,2,孙赞东1,3,董宁2
1. 中国石油大学地质地球物理综合研究中心,北京 102249
2. 中国石油化工股份有限公司石油勘探开发研究院,北京 100083
3. 中国石油天然气集团东方地球物理勘探有限责任公司,河北涿州 072751
Prestack inversion based on anisotropic Markov random field–maximum posterior probability inversion and its application to identify shale gas sweet spots
Wang Kang-Ning1,2, Sun Zan-Dong1,3, and Dong Ning2
1. Lab for Integration of Geology & Geophysics, China University of Petroleum, Beijing 102249, China.
2. SINOPEC Petroleum Exploration & Production Research Institute, Beijing 100083, China.
3. BGP, CNPC, Zhuozhou 072750, China.
 全文: PDF (1716 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 页岩油气的经济开采需要通过压裂来提高地层的渗透率,压裂的效果主要取决于杨氏模量及泊松比等岩石力学参数,因此可通过叠前反演来预测易压裂的甜点区。叠前反演是个典型的病态问题,需要进行正则化来求取唯一、稳定的解。针对含气页岩沉积体的发育特征,将地下变化的弹性参数视为各向异性的马尔可夫随机场,通过贝叶斯准则将叠前反演转化为求解最大后验概率问题,在横向和纵向上使用不同的能量函数作为分布假设,然后利用期望最大化算法对弹性参数的先验概率模型进行超参数估计,最后再用共轭梯度法将目标函数最小化,最终求得到边界变化清晰、纵向上具有高分辨率、横向上具有合理连续性的反演结果。通过在数值模型资料中的算法试验,证实了该算法的抗噪能力和清晰的图像反演效果,并通过算法在中国四川盆地页岩气工区地震资料的反演和甜点区预测中的实际应用,证明了其有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王康宁
孙赞东
董宁
关键词页岩油气   甜点识别   叠前反演   马尔科夫随机场     
Abstract: Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young’s modulus and Poisson’s ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation–maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.
Key wordsshale gas/oil   sweet spot   prestack inversion   Markov random field   
收稿日期: 2015-08-18;
基金资助:

本研究由中石油科技重大专项(编号:2014E-3204)资助。

引用本文:   
王康宁,孙赞东,董宁. 基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用[J]. 应用地球物理, 2015, 12(4): 533-544.
Wang Kang-Ning,Sun Zan-Dong,Dong Ning. Prestack inversion based on anisotropic Markov random field–maximum posterior probability inversion and its application to identify shale gas sweet spots[J]. APPLIED GEOPHYSICS, 2015, 12(4): 533-544.
 
[1] Alemie, W., and Sacchi, M. D., 2011, High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution: Geophysics, 76(3), R43−R55.
[2] Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems: Journal of the Royal Statistical Society, 36(2), 192−236.
[3] Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68(1), 185−198.
[4] Charbonnier, P., Blanc-Feraud, L., Aubert, G., and Barlaud, M., 1997, Deterministic edge-preserving regularization in computed imaging: IEEE Transactions on Image Processing, 6(2), 298−311.
[5] Chen, J. J., Yin, X. Y., and Zhang, G. Z., 2007, Simultaneous three term AVO inversion based on Bayesian theorem: Journal of China University of Petroleum (Edition of Natural Science), 31(3), 33−38.
[6] Close, D., Perez, M., Goodway, B., and Purdue, G., 2012, Integrated workflows for shale gas and case study results for the Horn River Basin, British Columbia, Canada: The Leading Edge, 31(5), 556−569.
[7] Downton, J. E., 2005, Seismic parameter estimation from AVO inversion: University of Calgary.
[8] Geman, S., and Geman, D., 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images: IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721−741.
[9] Gholami, A., 2015, Nonlinear multichannel impedance inversion by total-variation regularization: Geophysics, 80(5), R217−R224.
[10] Goodway, B., Varsek, J., and Abaco, C., 2010, Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional exploration: The Leading Edge, 29(12), 1500−1508.
[11] Huber, J., 1973, Robust regression: Asymptotics, Conjectures and Monte Carlo: Annals of Statistics, 1(5), 799−821
[12] Liu, C., Li, B. N., Zhao, X., Liu, Y., and Lu, Q., 2014, Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media: Applied Geophysics, 11(4), 384-394.
[13] Rimstad, K., and Omre, H., 2010, Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction: Geophysics, 75(4), R93-R108.
[14] Schultz, R. R., and Stevenson, R. L., 1994, A Bayesian approach to image expansion for improved definition: IEEE Transactions on Image Processing, 3(3), 233−242.
[15] Theune, U., Jensås, I. Ø., and Eidsvik, J., 2010, Analysis of prior models for a blocky inversion of seismic AVA data:Geophysics, 75(3), C25−C35.
[16] Tian, Y. K., Zhou, H., and Yuan, S. Y., 2013a, Lithologic discrimination method based on Markov random-field: Chinese Journal of Geophysics, 56(4), 1360-1368.
[17] Tian, Y. K., Zhou, H., Chen, H. M., Zou, Y. M., and Guan, S. J., 2013b, Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme: Applied Geophysics, 10(4), 453-460.
[18] Tikhonov, A., 1963, Solution of incorrectly formulated problems and the regularization method: Soviet Math Dokl 4 English translation of Dokl Akad Nauk SSSR, 151, 1035-1038.
[19] Ulvmoen, M., Omre, H. and Buland, A., 2010, Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 2-Real case study: Geophysics, 75(2), B73-B82.
[20] Walker, C., and Ulrych, T. J., 1983, Autoregressive recovery of the acoustic impedance: Geophysics, 48(10), 1338-1350.
[21] Xiong, F. S., and Wang, S. T., 2006, Application of MAP estimation based on Gaussian Markov random field in gaussian noise filter: Journal of Computer Applications, 26(10), 2362-2365.
[22] Youzwishen, C. F., and Sacchi, M. D., 2006, Edge preserving imaging: Journal of Seismic Exploration, 15(1), 45-58.
[23] Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 025001.
[24] Yuan, S. Y., Wang, S. X., Luo, C. M., and He, Y. X., 2015, Simultaneous multitrace impedance inversion with transform-domain sparsity promotion: Geophysics, 80(2), R71-R80.
[25] Zhang, H. M., Yuan, Z. J., Cai, Z. M., and Bian, Z. Z., 2002, Segmentation of MRI Using Hierarchical Markov Random Field: Journal of Software, 13(9), 1779-1786.
[1] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[2] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[3] 骆春妹, 王尚旭, 袁三一. 子波相位不准对叠前波形反演的影响[J]. 应用地球物理, 2014, 11(4): 479-488.
[4] 田玉昆, 周辉, 陈汉明, 邹雅铭, 关守军. Huber-Markov随机场自适应边缘保护贝叶斯地震资料叠前反演[J]. 应用地球物理, 2013, 10(4): 453-460.
[5] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司