APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 555-563    DOI: 10.1007/s11770-015-0515-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征
沙志彬1,2,张明2,张光学2,梁金强2,苏丕波2
1. 中国地质大学(武汉)资源学院,武汉 430074
2. 国土资源部海底矿产资源重点实验室,广州海洋地质调查局,广州 510075
Using 4C OBS to reveal the distribution and velocity attributes of gas hydrates at the northern continental slope of South China Sea
Sha Zhi-Bin1,2, Zhang Ming1, Zhang Guang-Xue1, Liang Jin-Qiang1,2, and Su Pi-Bo1
1. MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou, Guangdong 510075, China.
2. Faculty of Resources, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China.
 全文: PDF (2337 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了调查与研究南海北部陆坡天然气水合物矿体的分布及其速度特征,广州海洋地质调查局在该海域进行了一系列的四分量(4-Component,简称4C)海底高频地震仪(Ocean Bottom Seismometer,简称OBS)地震调查。本文对该局在该海域采集的四分量OBS站点地震数据进行成像处理。处理的关键步骤包括重定位、重定向、水陆检合并、镜像偏移。站点的重定位与重定向是使得四分量数据正确归位。水陆检合并是指水检和陆检的匹配,相加和相减分离上行波和下行波。上行波用于常规成像,下行波可用于镜像偏移。由于节点稀疏,上行波的常规成像无法识别天然气水合物分布。镜像偏移是利用检波点的下行波进行成像,既改善浅地层的构造照明,又提高了天然气水合物矿体的成像精度,可建立精确的速度模型。通过下行波成像,镜像偏移剖面构造特征清晰,分辨率高,海底、天然气水合物地震识别标志—似海底反射(Bottom Simulating Reflection,简称BSR)与高分辨率地震剖面和速度特征相吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙志彬
张明
张光学
梁金强
苏丕波
关键词天然气水合物   海底高频地震仪   数据处理   水陆检合并   镜像偏移     
Abstract: To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.
Key wordsgas hydrates   velocity attributes   ocean-bottom seismometer   PZ summation   mirror imaging   
收稿日期: 2014-08-07;
基金资助:

本研究由国家高技术研究发展计划(863计划)(编号:2013AA092501)和中国地质调查局(编号:GZH201100303 和 GZH201100305)联合资助。

引用本文:   
沙志彬,张明,张光学等. 利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征[J]. 应用地球物理, 2015, 12(4): 555-563.
Sha Zhi-Bin,Zhang Ming,Zhang Guang-Xue et al. Using 4C OBS to reveal the distribution and velocity attributes of gas hydrates at the northern continental slope of South China Sea[J]. APPLIED GEOPHYSICS, 2015, 12(4): 555-563.
 
[1] Amundsen, L., 2001, Elimination of free-surface related multiples without need of a source wavelet: Geophysics, 66(1), 327−341.
[2] Burch, D. N., Calvert, A. S., and Novak, J. M., 2005, Vector fidelity of land multicomponent measurements in the context of the earth-sensor system: misconceptions and implications: 75th Annual International Meeting, SEG, Expanded Abstracts, 904−907.
[3] Cantillo, J., Boelle, J. L., Lafram, A., and Lecerf, D., 2010, Ocean-bottom nodes (OBN) repeatability and 4D: 80th Annual International Meeting, SEG Expanded Abstracts, 61−65.
[4] Gong, Y. H., Wu, S. G., Zhang, G. X., Wang, H. B., Liang, J. Q., Guo, Y. Q., and Sha, Z. B., 2008, Relation between gas hydrate and geologic structures in dongsha islands area of south china sea: Marina Geology & Quaternary Geology (in Chinese), 28(1), 99−104.
[5] Grion, S., Exley, R., Manin, M., Miao, X. G., Pica, A., Wang, Y., Granger, P. Y., and Ronen, S., 2007, Mirror imaging of OBS data: First Break, 25(11), 37−42.
[6] Guevara, S. E., and Stewart, R. R., 1998, Multicomponent seismic polarization analysis: CREWES Research Report, 10.
[7] Hugonnet, P., Boelle, J. L., Herrmann, P., Prat, F., and Lafram, A., 2011, PZ summation of 3D WAZ OBS receiver gathers: 73nd EAGE meeting, Expanded Abstract, 30.
[8] Hyndman, R. D., and Davies, E. E., 1992, A Mechanism for the Formation of Methane Hydrate and seafloor bottom simulating reflectors by vertical fluid expulsion: Journal of Geophysical Research, 97(B5), 7025−7041.
[9] Kvenvolden, K. A., 1993, Gas hydrates-geological perspective and global change: Reviews of Geophysics, 31(2), 173−187.
[10] Li, L., Lei, X. H., Zhang, X., and Sha Z. B., 2013, Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea: Marine and Petroleum Geology, 39(1), 92−101.
[11] Pang, X., Chen, C. M., Peng, D. J., Zhou, D., Shao, L., 2009, Basic Geology of Baiyun deep water area in the North part of Nanhai: China Petroleum Geology Society, 2009, 20(4), 215−222.
[12] Riedel, M., Spence, D., Chapman, N. R., and Hyndman, R. D., 2001, Deep-sea gas hydrates on the northern cascadia margin: The leading edge, 87−92.
[13] Shi, X. F., and Yan, Q. S., 2011, Geochemistry of Cenozoic magmatism in the South China Sea and its tectonic implications: Marine Geology and Quaternary Geology, 31, 59−72.
[14] Soubaras, R., 1996, Ocean-bottom hydrophone and geophone processing: Proceedings of the Society of Exploration Geophysicists, 24−27.
[15] Wang, Y., Bale, R., and Grion, S., 2010a, A new approach to remove the water column effect from 4D ocean bottom data: 80th SEG Annual Meeting, 4205−4209.
[16] Wang, Y., Grion, S., and Bale, R., 2010b, Up-down deconvolution in the presence of subsurface structure, 72nd EAGE meeting, Expanded Abstract, D001.
[17] Yi, H., Zhong, G. J., and MA, J. F., 2007, Fructure characteristics and basin evlution of the Taixinan basin in genozoic: Petroleum Geology & Experiment (in Chinese), 29(6), 560−564.
[18] Zhang, G. X., Liang, J. Q., LU J. A., Yang, S. X., Zhang, M., Su, X., Xu, H. N., Fu, S. Y., and Kuang, Z. G., 2014a, Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea: Natural gas industry (in Chinese), 34(11), 1−10.
[19] Zhang, G. X., Xu, H. N., Liu, X. W., Zhang, M., Wu, Z. L., Liang, J. Q., Wang, H. B., and Sha, Z. B., 2014b, The acoustic velocity characteristics of sediment with gas hydrate revealed by integrated exploration of 3D seismic and OBS data in Shenhu area: Chinese Journal of Geophysics (in Chinese), 57(4), 1169−1176.
[1] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[2] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[3] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[4] 何涛, 李洪林, 邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
[5] 张明华, 贺颢, 王成锡. 中国区域重力信息系统建设[J]. 应用地球物理, 2011, 8(2): 170-175.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司