APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 523-532    DOI: 10.1007/s11770-015-0523-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于弹性参数加权统计的储层物性参数反演方法
桂金咏,高建虎,雍学善,李胜军,刘炳杨,赵万金
中国石油勘探开发研究院西北分院,甘肃 兰州 730020
Reservoir parameter inversion based on weighted statistics
Gui Jin-Yong1, Gao Jian-Hu1, Yong Xue-Shan1, Li Sheng-Jun1, Liu Bin-Yang1, and Zhao Wan-Jin1
1. Research Institute of Petroleum Exploration & Development-Northwest Branch, Petrochina, Lanzhou 730020, China.
 全文: PDF (1217 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 储层物性参数的改变伴随着弹性参数某种程度的改变,而这种改变并非简单的线性关系。加上观测信息的缺失、重叠、噪声破坏及模型理想化等原因,致使这种改变关系的获取具有较大的不确定性。针对传统统计岩石物理物性参数反演方法的不足,以利用弹性参数反演储层物性参数为目的,依据贝叶斯反演框架,我们建立了新的储层物性参数目标反演函数。首先,采用兼具确定性与随机性特点的统计岩石物理模型,考虑到不同弹性参数间的精度存在差异,引入权重系数,建立起储层物性参数与弹性参数间的加权统计关系。其次,基于这种加权统计关系,结合马尔科夫链蒙特卡洛随机模拟技术产生储层物性参数、弹性参数随机联合样本空间作为目标函数求解样本空间。最后,建立解的快速求解准则,求取最大后验概率密度对应的储层物性参数取值作为最终解。实际应用表明,该方法具有较高的反演效率,应用前景较好。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂金咏
高建虎
雍学善
李胜军
刘炳杨
赵万金
关键词储层物性参数   反演   加权统计   贝叶斯   随机模拟     
Abstract: Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
Key wordsReservoir parameters   inversion   weighted statistics   Bayesian framework   stochastic simulation   
收稿日期: 2015-06-08;
基金资助:

本研究由国家科技重大专项课题(编号:2011ZX05007-006)、国家973专项(编号:2013CB228604)、中国石油股份公司科技专项(编号:2014B-0610)联合资助。

引用本文:   
桂金咏,高建虎,雍学善等. 基于弹性参数加权统计的储层物性参数反演方法[J]. 应用地球物理, 2015, 12(4): 523-532.
Gui Jin-Yong,Gao Jian-Hu,Yong Xue-Shan et al. Reservoir parameter inversion based on weighted statistics[J]. APPLIED GEOPHYSICS, 2015, 12(4): 523-532.
 
[1] Bachrach, R., 2006, Joint estimation of porosity and saturation using stochastic rock-physics modeling: Geophysics, 71(5), O53-O63.
[2] Blangy, J. P., 1992, Integrated seismic lithologic interpretation: The petrophysical basis: Ph.D. thesis, Stanford University.
[3] Doyen, P. M., 1988, Porosity from seismic data: A geostatistical approach: Geophysics, 53, 1263-1275.
[4] Fan, J. J., and Liu, P., 2008, Research on Naive Bayesian Classifier’s independence assumption: Computer Engineering and Applications (in Chinese), 44, 131-141.
[5] Fournier, F., 1989, Extraction of quantitative geologic information from seismic data with multidimensional statistical analysis: Part I, methodology, and Part II, a case study: 59th Annual International Meeting, SEG, Expanded Abstracts, 726-733.
[6] Friedman, N., Geiger, D., and Goldszmidt, M., 1997, Bayesian Network Classifiers: Machine Learning, 29, 131-163.
[7] Grana, D., and Rossa, E. D., 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion: Geophysics, 75(3), O21-O37.
[8] Hastie, T., Tibshirani, R., and Friedman, J., 2002, The elements of statistical learning: Springer.
[9] Marion, D., and Jizba, D., 1997, Acoustic properties of carbonate rocks: Use in quantitative interpretation of sonic and seismic measurements, in I. Palaz, and K. J. Marfurt, eds., Carbonate Seismology: Geophysical Developments, SEG, 75-93.
[10] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook: Cambridge University Press, UK, 150-151.
[11] Kabir, N., Lavaud, B., and Chavent G., 2000, Estimation of the density contrast by AVO inversion beyond the linearized approximation: an indicator of gas saturation. 70th Annual International Meeting, SEG, Expanded Abstracts, 243-246.
[12] Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76(3), C19-C29.
[13] Spikes, K., Mukerji, T., Dvorkin, J., and Mavko, G., 2008, Probabilistic seismic inversion based on rock-physics models: Geophysics, 72(5), R87-R97.
[14] Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: Society for Industrial and Applied Mathematics Press, USA, 20.
[15] Yin, X. Y., Sun, R. Y., Wang, B. L., and Zhang, G. Z., 2014, Simultaneous inversion of petrophysical parameters based on geostatistical a priori information: Applied Geophysics, 11(3), 311-320.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[9] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[10] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[11] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[12] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[13] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[14] 常德宽,杨午阳,王一惠,杨庆,魏新建,冯小英. 基于非局部贝叶斯地震数据随机噪声压制方法[J]. 应用地球物理, 2018, 15(1): 91-98.
[15] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司