APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 401-408    DOI: 10.1007/s11770-015-0497-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
部分饱和孔隙介质中的纵波方程及衰减特性研究
张会星,何兵寿
中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛 266100
Propagation and attenuation of P-waves in patchy saturated porous media
Zhang Hui-Xing1 and He Bing-Shou1
1. Key Lab of Submarine Geosciences and Prospecting Ministry of Education, Ocean University of China, Qingdao 266100, China.
 全文: PDF (623 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文以中观孔隙结构的White模型为基础,构建了部分饱和孔隙介质模型,利用Biot方程的建立思路和Johnson推导的体变模量,推导了部分饱和孔隙介质中的纵波方程,并以平面波为例,求取了方程的衰减系数,分析了地震勘探频带范围内地震波的衰减特性。结果表明:在部分饱和孔隙介质中,地震波在低频段也会发生明显的衰减和频散现象,频率越大,衰减越大;且第二纵波的衰减比第一纵波更为明显;这一结论弥补了Biot理论在描述地震勘探频带范围内波的衰减现象的不足。文中还研究了孔隙度、饱和度和模型内径尺寸对第一纵波衰减特性的影响机理,主要表现在:在地震勘探频带范围内,波的衰减随孔隙度的增大而增大,随含油气饱和度的增大而减小,当孔隙内径尺寸小于二分之一外径尺寸时,波的衰减随内径尺寸的增大而增大,当内径尺寸大于二分之一外径尺寸时,波的衰减随内径尺寸增大而减小。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张会星
何兵寿
关键词部分饱和孔隙介质   地震波方程   衰减     
Abstract: We establish a patchy saturation model and derive the seismic wave equations for patchy saturated porous media on the basis of Biot’s equations and Johnson’s bulk modulus. We solve the equations, obtain the attenuation coefficients, and analyze the characteristics of wave attenuation in the seismic frequency range. The results suggest that seismic waves show attenuation and dispersion in partially saturated rocks in the low frequency range. With frequency increasing, attenuation increases. The attenuation of P-waves of the second kind is more pronounced in agreement with Biot’s theory. We also study the effect of porosity, saturation, and inner sphere radius on the attenuation of the P-waves of the first kind and find that attenuation increases with increasing frequency and porosity, and decreases with increasing frequency and degree of saturation. As for the inner sphere radius, wave attenuation is initially increasing with increasing frequency and inner sphere radius less than half the outer radius. Subsequently, wave attenuation decreases with increasing frequency and inner sphere radius is higher than half the outer sphere radius.
Key wordsPatchy saturated porous medium   propagation equation   seismic wave attenuation   
收稿日期: 2015-02-09;
基金资助:

本研究由国家自然科学基金项目(编号:41204089,41174087)、十二五国家科技重大专项(编号:2011ZX05035-001,2011ZX05005-005)和国家“863”计划项目(编号:2013AA064201)联合资助。

引用本文:   
张会星,何兵寿. 部分饱和孔隙介质中的纵波方程及衰减特性研究[J]. 应用地球物理, 2015, 12(3): 401-408.
Zhang Hui-Xing,He Bing-Shou. Propagation and attenuation of P-waves in patchy saturated porous media[J]. APPLIED GEOPHYSICS, 2015, 12(3): 401-408.
 
[1] Berryman, J. G., 1988, Seismic wave attenuation in fluid-saturated porous media: Pure and Applied Geophysics, 128(1-2), 423-432.
[2] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range: Journal of the Acoustical Society of America, 28,168-178.
[3] Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: Journal of Applied Physics, 33(4), 1482-1498.
[4] Bordakov, G. A., Ilyasov, K. K., Sekerzh-zenkovitch, S. Y., and Mikolaevski, E. Y., 1999, Wave refraction with a porous plate in liquid-Comparison of Biot’s and BISQ theories: 61st EAEG Internatational Meeting, Expanded Abstracts, 2-3.
[5] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1-O8.
[6] Chabyshova, E., and Goloshubin, G., 2011, Asymptotic Biot’s model for estimation of seismic attenuation in porous layered medium: 81st Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2188-2193.
[7] Deng, J. X., Wang, S. X., and Du, W., 2012, A study of the influence of mesoscopic pore fluid flow on the propagation properties of compressional wave—a case of periodic layered porous media: Chinese Journal of Geophysics(in Chinese), 55(8), 2716-2727.
[8] Dvorkin, J., Mavko, G., and Nur, A., 1995, Squirt flow in fully saturated rocks: Geophysics, 60, 97-107.
[9] Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994, The Squirt-flow mechanism: Macroscopic description: Geophysics, 59(3), 428-438.
[10] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms: Geophysics, 58(4), 524-533.
[11] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16(4), 673-685.
[12] Gurevich, B., Makarynska, D., Paula, O. B., et al., 2010, A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks: Geophysics, 75(6), N109-N120.
[13] Hefner, B. T., and Jackson, D. R., 2010, Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium: Acoustical Society of America, 127(6), 3372-3384.
[14] Hill, R., 1963, Elastic properties of reinforced solids: Some theoretical principles: Journal of the Methanics and Physiscs of Solids, 11(5), 357-372.
[15] Hill, R., 1964, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior: Journal of the Methanics and Physics of Solids, 12(4), 199-212.
[16] Huang, X. D., and Li, M., Poroelastic and Hydrocarbon Detection: Beijing: Petroleum industry Press, 2012.
[17] Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media: Journal of the Acoustical Society of America, 110, 682-694.
[18] Kuteynikova, M.,Tisato, N. ,Jänicke, R.,andQuintal, B., 2014, Numerical modeling and laboratory measurements of seismicattenuationin partially saturated rock: Geophysics, 79(2), L13-L20.
[19] Ling, Y., Han, L. G., and Zhang, Y. M., 2014, Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media: Applied Geophysics, 11(4), 355-363.
[20] Mavko, G., and Nur, A., 1979, Wave attenuation in partially saturated rocks: Geophysics, 44, 161-178.
[21] M?ller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147-75A164.
[22] Nie, J. X., Ba, j., Yang, D. H., et al., 2012, BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium: Applied Geophysics, 9(2), 213-222.
[23] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: Journal of Geophysical Research, 109, B01201.
[24] Tisato, N.,Quintal, B.,Chapman, S.,et al.,2014,Seismic attenuation in partially saturated rocks: Recent advances and future directions:The Leading Edge, 33(6), 640-642, 644-646.
[25] White, J. E., Mikhaylova, N. G., and Lyakhovitskiy, F. M., 1975, Low-frequency seismic waves in fluid saturated layered rocks: Journal of the Acoustical Society of America, 57(S30), 654-659.
[26] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40, 224-232.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[3] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[6] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[7] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[8] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[9] 刘学清,王彦春,张贵宾,马胜利,成丽芳,余文武. 叠前FAGVO计算方法及应用[J]. 应用地球物理, 2016, 13(4): 641-648.
[10] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[11] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[12] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[13] 郭智奇, 刘喜武, 符伟, 李向阳. 粘弹各向异性反射体模型方位地震AVO模拟及分析[J]. 应用地球物理, 2015, 12(3): 441-452.
[14] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[15] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司