APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 389-400    DOI: 10.1007/s11770-015-0507-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
弹性波变阶数旋转交错网格数值模拟
王为中1,胡天跃1,吕雪梅1,秦臻2,李艳东2,张研2
1.北京大学地球与空间科学学院,北京 100871
2. 中国石油勘探开发研究院,北京 100083
Variable-order rotated staggered-grid method for elastic-wave forward modeling
Wang Wei-Zhong1, Hu Tian-Yue1, Lu Xue-Mei1, Qin Zhen2, Li Yan-Dong2, and Zhang Yan2
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. Research Institute of Petroleum Exploration & Development, Petro China, Beijing 100083, China.
 全文: PDF (989 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波场数值模拟方法对理解和分析地震波的传播规律具有着重要的意义。弹性波动方程能够模拟地下介质的实际情况,为偏移和成像提供有效的依据。在弹性波波场数值模拟中,旋转交错网格数值模拟(RSM)修改了标准交错网格数值模拟(SSM)方法,将同类的参数定义在同样的节点上,拓宽了稳定性条件的约束,但在低速区会出现较严重的频散。变阶数差分方法是自适应空间算子长度方法的一种变化和推广。它以理论频散误差研究为基础,结合实际波场传播的情况进行误差计算,对不同速度匹配不同的差分阶数。本文研究了变阶数旋转交错网格数值模拟(VRSM),即是将变阶数方法应用到RSM中,它可以很好地解决RSM在低速区域的数值频散问题,以及减少不必要的时间损耗;同时讨论了旋转交错网格的理论频散特性,并基于波场分离的方法分析了实际波场传播的频散误差,将原方法的应用范围由声波推广到剪切波,由理论值推广到时变值。在数值模拟试验中,VRSM将被应用于水平层模型和Overthrust模型。通过阶数分配以及相应波场传播效果和计算时间的分析,验证了该方法应用于复杂介质波场模拟中的实用性和有效性。实验的结果表明VRSM能够合理分配不同速度所对应的差分阶数,能保证计算的精确性,并合理控制计算的时间。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王为中
胡天跃
吕雪梅
秦臻
李艳东
张研
关键词弹性波   变阶数   旋转交错网格   横波   时变     
Abstract: Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.
Key wordsVariable order   rotated staggered grid   dispersion   shear wave   time varying   
收稿日期: 2014-12-15;
基金资助:

本研究由国家973计划(2013CB228602),国家科技重大专项(2011ZX05004-003)和国家863计划(2013AA064202)资助。

引用本文:   
王为中,胡天跃,吕雪梅等. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
Wang Wei-Zhong,Hu Tian-Yue,Lv Xue-Mei et al. Variable-order rotated staggered-grid method for elastic-wave forward modeling[J]. APPLIED GEOPHYSICS, 2015, 12(3): 389-400.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods: Bulletin of the Seismological Society of America, 58(1), 367−398.
[2] Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAGE 3-D modeling project: 2nd update: The Leading Edge, 13(9), 949−952.
[3] Chen, H. M., Zhou, H., Lin, H., and Wang, S. X., 2013, Application of perfectly matched layer for scalar arbitrarily wide-angle wave equations: Geophysics, 78(1), T29−T39.
[4] Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications, California, 47-49.
[5] Dankbaar, J. W. M., 1985, Separation of P-waves and S-waves: Geophysical Prospecting, 33(7), 970−986.
[6] Dellinger, J., and Etgen, J., 1990, Wave-field separation in two-dimensional anisotropic media: Geophysics, 55(7), 914−919.
[7] Duan, Y. T., Hu, T. Y., Yao, F. C., and Zhang, Y., 2013, 3D elastic wave equation forward modeling based on the precise integration method: Applied Geophysics, 10(1), 71−78.
[8] Hendrick, N., and Brand, E., 2006, Practical evaluation of P- and S-wave separation via elastic wave field decomposition: Exploration Geophysics, 37(2), 139−149.
[9] Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling: Geophysical Journal International, 157(3), 1269−1296.
[10] Jackson, J. D., 1998, Classical electrodynamics, 3rd Edition: John Wiley & Sons, Inc, United States of America, 295−299.
[11] Jastram, C.,and Tessmer, E., 1994, Elastic modeling on a grid with vertically varying spacing: Geophysical Prospecting, 42(4), 357−370.
[12] Jia, Y., and Paul, S., 2009, Elastic wave mode separation for VTI media: Geophysics, 74(5), 19−32.
[13] Li, Z. C., Zhang, H., Liu, Q., and Han, W., 2007, Elastic wave high order staggered grid wave separation forward modeling: Oil Geophysical Prospecting, 42(5), 510−515.
[14] Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76(4), T79−T89.
[15] Liu, Y., and Sen, M. K., 2011b, Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101(1), 141−159.
[16] Liu, Y., and Sen, M. K., 2009, An implicit staggered-grid finite-difference method for seismic modeling: Geophysical Journal International, 179(1), 459−474.
[17] Moczo, P., 1989, Finite-difference technique for SH-wave in 2D media using irregular grids-application to the seismic response problem: Geophysical Journal International, 99(2), 321−329.
[18] O’Brien, G. S., 2010, 3D rotated and standard staggered finite-difference solutions to Biot’s poroelastic wave equations: Stability condition and dispersion analysis: Geophysics, 75(4), T111−T119.
[19] Opršal, I.,and Zahradník, J., 1999, Elastic finite-difference­ method for irregular grids: Geophysics, 64(1), 240−250.
[20] Saenger, E. H., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[21] Saenger, E. H., Gold, N., and Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite-difference method: Wave Motion, 31, 77−92.
[22] Saenger, E. H., Ciz, R., Krüger, O. S., Schmalholz, S. M., Gurevich, B., and Shapiro, S. A., 2007, Finite difference modeling of wave propagation on microscale: A snapshot of the work in progress: Geophysics, 72(5), SM293−SM300.
[23] Sun, R., McMechan, G. A., Hsiao, H. H., and Chow, J., 2004. Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286−297.
[24] Tang, J., Li, J. J., Yao, Z. A., Shao, J., and Sun, C. Y., 2015, Reservoir time-lapse variations and coda wave interferometry: Applied Geophysics, 12(2), 244−254.
[25] Tessmer, E., 2000,Seismic finite-difference modeling with spatially varying time steps: Geophysics,65(4), 1290−1293.
[26] Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 49(11), 1933−1957.
[27] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889−901.
[28] Wang, S. X., Li, X. Y., Qian, Z. P., Di, B. R., and Wei, J. X., 2007, Physical modeling studies of 3-D P-wave seismic for fracture detection: Geophysical Journal International, 168(2), 745−756.
[29] Wang, W. Z., Qin, Z., Hu, T. Y., Li, Y. D., and Zhang, Y., 2014, Elastic wave equation rotated-grid forward modeling and imaging based on wave separation method: 76th EAGE Conference and Exhibition, Extended abstract, Th G105 10.
[30] Wang, X., Dodds, K., and Zhao, H., 2006, An improved high-order rotated staggered finite-difference algorithm for simulating elastic waves in heterogeneous viscoelastic/anisotropic media: Exploration Geophysics, 37(2), 160−174.
[31] Yang, H. X., and Wang, H. X., 2013, A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves: Applied Geophysics, 10(1), 63−70.
[32] Yang, J. H., Liu, T., Tang, G., and Hu, T. Y., 2009, Modeling seismic wave propagation within complex structures: Applied Geophysics, 6(1), 30−41.
[33] Zhang, Q. S., and George, A. M., 2010, 2D and 3D elastic wave field vector decomposition in the wave number domain for VTI media: Geophysics, 75(3), 13−26.
[34] Zhang, Y., and Liu, Y., 2012, 3D poroviscoelastic rotated staggered finite-difference modeling with PML absorbing boundary conditions: 82nd SEG, Annual International Meeting, Expanded Abstracts, 1−5.
[35] Zhou, H., Wang, S. X., Li, G. F., and Shen, J. S., 2010, Analysis of complicated structure seismic wave fields: Applied Geophysics, 7(2), 185−192.
[1] 王浩,李宁,王才志,武宏亮,刘鹏,李雨生,刘英明,原野. 井旁裂缝对偶极横波反射波幅度影响分析*[J]. 应用地球物理, 2019, 16(1): 1-14.
[2] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[3] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[4] 曲英铭,孙军治,李振春,黄建平,李海鹏,孙文之. 起伏海底界面上覆液相弹性介质的海底电缆数据正演模拟与波形分离方法[J]. 应用地球物理, 2018, 15(3-4): 432-447.
[5] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[6] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[7] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[8] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[9] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[10] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[11] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[12] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[13] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[14] 张丽艳, 王彦春 , 裴江云. 三分量地震在薄互层油气藏勘探中的应用[J]. 应用地球物理, 2015, 12(1): 79-85.
[15] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司