APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 421-431    DOI: 10.1007/s11770-015-0505-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Xu-White模型的致密储层叠前正演模拟研究与应用
朱超,郭庆新,宫清顺,刘占国,李森明,黄革萍
中国石油杭州地质研究院,浙江杭州 310023
Prestack forward modeling of tight reservoirs based on the Xu–White model
Zhu Chao1, Guo Qing-Xin1, Gong Qing-Shun1, Liu Zhan-Guo1, Li Sen-Ming1, and Huang Ge-Ping1
1. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China.
 全文: PDF (1287 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 致密储层与围岩波阻抗差异小,常规储层反演方法难以有效预测出有利区。中国西部致密储层非均质性强,常规储层反演预测难度大,本文提出了基于Xu-White模型的叠前储层预测方法。首先修正Xu-White模型的试验参数,直至该模型计算出来的纵、横波速度及密度与实际测井得到的数值基本吻合,然后用修正的模型计算不同储层物性、岩性、含油性下的纵、横波速度、密度及泊松比,进而建立不同的砂泥岩互层地质模型。其次,采用Zoeppritz方程近似式进行叠前正演,分析不同储层物性、岩性、含油性时的叠前道集响应特征,在对中国西部Z区实际叠前道集优化处理的基础上,选择其中1种对岩性、含油性、物性最敏感的弹性参数,对其有利储层分布区进行预测,其预测结果具有较高的精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱超
郭庆新
宫清顺
刘占国
李森明
黄革萍
关键词Xu-White模型   弹性参数   叠前正演模拟   致密储层     
Abstract: Inversion methods for conventional reservoirs cannot be used in tight reservoirs because of small differences in wave impedance between tight reservoirs and surrounding rocks. Tight reservoirs in western China are characterized by strong heterogeneity; thus, it is difficult to predict favorable zones using conventional reservoir inversion methods. In this study, we propose an inversion method based on the Xu–White model. First, we modify the test parameters of the Xu–White model until model P- and S-wave velocities and density values agree with well-logging data. Then, we calculate P- and S-wave velocities, density, and Poisson ratio for different lithologies and oil saturation and construct different geological models for interbedded sand and shale. Subsequently, we use approximations to Zoeppritz equations to perform prestack forward modeling and analyze the response characteristics of prestack gathers for different physical properties, lithology, and oil saturation. We analyze the response of thirteen types of elastic parameters to porosity, clay content, and oil saturation. After the optimization of the real prestack gathers in the Z area of western China, we select an elastic parameter that is the most sensitive to lithology and oil saturation to predict the distribution of oil-producing reservoirs with high accuracy.
Key wordsXu–White model   elastic parameter   prestack forward modeling   tight reservoir   
收稿日期: 2015-05-22;
基金资助:

本研究由中国石油天然气股份公司重大科技专项(编号:2011E-0303)资助。

引用本文:   
朱超,郭庆新,宫清顺等. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
Zhu Chao,Guo Qing-Xin,Gong Qing-Shun et al. Prestack forward modeling of tight reservoirs based on the Xu–White model[J]. APPLIED GEOPHYSICS, 2015, 12(3): 421-431.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative Seismology: Theory and Methods: W. H. Freeman and Company, the San Francisco, 100−170.
[2] Bill, G., Marco, P., and John, V., 2010, Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration: The Leading Edge, 29(12), 1500−1508.
[3] Bruce, S. H., Robin, P., and Geoffrey, C., 2002, 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs: The Leading Edge, 21(1), 28−35.
[4] Bai, J. Y., Song, Z. X., and Su, L., 2012, Error analysis of shear-velocity prediction by the Xu-White model: Chinese Journal of Geophysics ( in Chinese), 55(2), 589−595.
[5] Ba, J., Yan, X. F., Chen, Z. Y., et al., 2013, Rock physics model and gas saturation inversion for heterogeneous gas reservoir: Chinese J. Geophys.(in Chinese), 56(5),1696−1706.
[6] Chen,Y., Huang, T. F., and Liu, E. R., 2009, Petrophysics: University of Science and Technology of China Press, Hefei, 310−375.
[7] Cheng, B. J., Xu, T. J., and Li, S. G., 2012, Research and application of frequency dependent AVO analysis for gas recognition: Chinese Journal of Geophysics (in Chinese), 55(2), 608−613.
[8] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16(1), 673−685.
[9] James, J. R., 2007, Developing new 3D seismic fracture interpretation methods for tight gas reservoirs: The Leading Edge, 26(2), 162−166.
[10] Keys, R. G., and Xu, S. Y., 2002, An approximation for the Xu-White velocity model: Geophysics, 67(5), 1406−1414.
[11] Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two phase media: Part 1: Theoretical formulation: Geophysics, 39(1), 587−606.
[12] Militzer, B., Wenk, H. R., Stackhouse, S., Stixrude, L., 2011, First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy: American Mineralogist, 96(1), 125−137.
[13] Qiao, Y.D., Gao, Y.F., and An, H.W., 2007, Technology of optimized shear wave velocity prediction based on Xu-White model: Journal of Oil and Gas Technology(in Chinese), 29(5), 100−105.
[14] Qiao, S. R., Zhang, H., and Zhao, S., 2008, Reservoir prediction techniques and their application to tight sandstones of the Xujiahe Formation in DY area, western Sichuan Basin: Oil & Gas Geology ( in Chinese), 29(6), 774−780.
[15] Sait, B., and Matthew, J. P., 2013, Fault and fracture distribution within a tight-gas sandstone reservoir: Mesaverde Group, Mamm Creek Field, Piceance Basin, Colorado, USA: Petroleum Geoscience, 19(3), 203−222.
[16] Shuey R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50(4), 609−614.
[17] Xavier, E. R.,Kurt, J. M.,and Joël, H. L., 2011, Inversion and attribute-assisted hydraulically induced microseismic fracture characterization in the North Texas Barnett Shale: The Leading Edge, 30(3), 292−299.
[18] Xu, S. Y., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(1), 66−74.
[19] Xu, S. Y., and White, R. E., 1995, A new velocity model for clay-sand mixtures: Geophysical Prospecting, 43(1), 91−118.
[20] Xu, S. Y., and White, R. E., 1996, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44(5),687−717.
[21] Yan, X. F., Yao, F. C., Cao, H., et al., 2011, Analyzing the mid-low porosity sandstone dry frame in central Sichuan based on effective medium theory: Applied Geophysics, 8(3), 163−170.
[22] Yang, S. G., and Zhou, X. X., 1995, Forward model for AVO characteristic stack section and the application: Oil Geophysical Prospecting (in Chinese), 30(6), 772−774.
[23] Yu, H., Ba, J., Carcione, J., et al., 2014, Rock physics modeling in heterogeneous carbonate reservoirs: Porosity estimation and hydrocarbon detection: Applied Geophysics, 11(1), 9−22.
[24] Zheng, X. D., 1991, Forward AVO method and its application: Oil Geophysical Prospecting (in Chinese), 26(6), 766−776.
[1] 宗兆云,印兴耀,李坤. 基于贝叶斯理论的时频域联合AVO反演方法研究[J]. 应用地球物理, 2016, 13(4): 631-640.
[2] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[3] 麻纪强, 耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
[4] 黄捍东, 张如伟, 慎国强, 郭飞, 汪佳蓓. 叠前弹性参数一致性反演方法研究[J]. 应用地球物理, 2011, 8(4): 311-318.
[5] 贺芙邦, 游俊, 陈开远. 基于岩石物理分析的叠前弹性反演预测含气砂岩分布[J]. 应用地球物理, 2011, 8(3): 197-205.
[6] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 7(1): 1-9.
[7] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 6(1): 1-9.
[8] 牛滨华, 孙春岩, 闫国英, 杨维, 刘畅. 含气介质临界点、流体和骨架弹性参数的线性数值计算方法[J]. 应用地球物理, 2009, 6(4): 319-326.
[9] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司