APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 292-302    DOI: 10.1007/s11770-015-0495-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
并行计算及其性能分析在重力全张量梯度数据反演中的应用
侯振隆1,魏晓辉1,黄大年2,孙煦3
1. 吉林大学计算机科学与技术学院,长春 130026
2. 吉林大学地球探测科学与技术学院,长春 130026
3. 吉林大学工程训练中心,长春 130026
Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms
Hou Zhen-Long1, Wei Xiao-Hui1, Huang Da-Nian2, and Sun Xu3
1. College of Computer Science and Technology, Jilin University, Changchun 130026, China.
2. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
3. Engineering Training Center, Jilin University, Changchun 130026, China.
 全文: PDF (753 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文在实现重力全张量梯度数据重加权聚焦反演的基础上,利用MPI与CUDA实现了算法的并行运算,以及二者联合的混编并行程序,引入并行计算中的程序性能指标,对算法性能进行分析和综合对比,总结出一套评价规则用于并行算法程序的性能分析。此规则给出算法各自的性能评估方法,有助于客观全面地评价程序的性能,从程序开发和算法实现的角度帮助评估和提高算法的并行效率。同时我们将该套程序和评价规则用于理论模型和Vinton 盐丘的实测梯度数据中,不仅反演出良好的密度结果,还获得了较高的运算效率,验证了所使用并行算法在重力全张量梯度数据反演中的可行性,根据评价规则认为程序均具有良好的运行效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯振隆
魏晓辉
黄大年
孙煦
关键词MPI   CUDA   性能指标   重力全张量梯度数据   密度反演     
Abstract: We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model and real density data, and verify the high efficiency and feasibility of parallel computing algorithms in the inversion of full tensor gravity gradiometry data.
Key wordsMPI   CUDA   performance metrics   full tensor gravity gradiometry   density inversion   
收稿日期: 2014-11-21;
基金资助:

本研究由深部探测技术与实验研究专项项目(Sino-Probe09)(编号:201011078)和国家高技术研究发展计划(863计划)(编号:2014AA06A613)联合资助。

引用本文:   
侯振隆,魏晓辉,黄大年等. 并行计算及其性能分析在重力全张量梯度数据反演中的应用[J]. 应用地球物理, 2015, 12(3): 292-302.
Hou Zhen-Long,Wei Xiao-Hui,Huang Da-Nian et al. Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms[J]. APPLIED GEOPHYSICS, 2015, 12(3): 292-302.
 
[1] Chen, Z. X., Meng, X. H., Guo, L. H., and Liu, G. F., 2012a, GICUDA: A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA:Computers & Geosciences,46, 119−128.
[2] Chen, Z. X., Meng, X. H., Guo, L. H., and Liu, G. F., 2012b, Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU.Chinese Journal of Geophysics,55(12), 4069−4077.
[3] Cook, S., 2013,CUDA programming: a developer’s guide to parallel computing with GPUs: Chinese Machine Press, Beijing.
[4] Couder-Castañeda, C., Ortiz-Alemán, C., Orozco-del-Castillo, M. G., and Nava-Flores, M., 2013, TESLA GPUs versus MPI with OpenMP for the Forward Modeling of Gravity and Gravity Gradient of Large Prisms Ensemble:Journal of Applied Mathematics,1−15.
[5] Ennen, C., and Hall, S., 2011, Structural mapping of the Vinton salt dome, Louisiana, using gravity gradiometry data: 81st Annual International Meeting, SEG, Expanded Abstracts, 830-835.
[6] uma, M., and Zhdanov, M. S., 2014, Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs:Computers & Geosciences, 62, 80−87.
[7] Farber, R., 2011,CUDA application design and development: Chinese Machine Press, Beijing.
[8] Geng, M., Huang, D., Yang, Q., and Liu, Y., 2014, 3D inversion of airborne gravity-gradiometry data using cokriging: Geophysics,79(4), 37−47.
[9] Last, B. J., and Kubik, K., 1983, Compact gravity inversion:Geophysics, 48(6), 713−721.
[10] Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics,61(2), 394−408.
[11] Li, Y., and Oldenburg, D. W., 1998, 3-D inversion of gravity data:Geophysics, 63(1), 109−119.
[12] Marfurt, K. J., Zhou, H. W., and Sullivan, E. C., 2004,Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA. University of Houston, Houston.
[13] Moorkamp, M., Jegen, M., Roberts, A., and Hobbs, R., 2010, Massively parallel forward modeling of scalar and tensor gravimetry data:Computers & Geosciences,36(5), 680−686.
[14] NVidia, C.U.D.A. 2014a, CUDA C Programming Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA,p.241.
[15] NVidia, C.U.D.A. 2014b, C Best Practices Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA, p.85.
[16] NVidia, C.U.D.A. 2014c. CUBLAS Library (Version 6.5): NVIDIA, Santa Clara, CA, USA, p.143.
[17] NVidia, C.U.D.A. 2014d, CUDA Profiler Users Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA,p.87.
[18] Oliveira, V. C., and Barbosa, V. C., 2013, 3-D radial gravity gradient inversion: Geophysical Journal International,195(2), 883−902.
[19] Pacheco, P., 2011,An introduction to parallel programming. Chinese Machine Press, Beijing.
[20] Pilkington, M., 1997, 3-D magnetic imaging using conjugate gradients: Geophysics,62(4), 1132−1142.
[21] Pilkington, M., 2008, 3D magnetic data space inversion with sparseness constraints: Geophysics,74(1), L7−L15.
[22] Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images:Geophysics,64(3), 874−887.
[23] Portniaguine, O. N., 1999,Image focusing and data compression in the solution of geophysical inverse problems:Ph.D. thesis, University of Utah, Utah, USA.
[24] Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compression and image focusing: Geophysics,67(5), 1532−1541.
[25] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data.Geophysics,65(3), 791−803.
[26] Smith, J. T., and Booker, J. R., 1988, Magnetotelluric inversion for minimum structure: Geophysics,53(12), 1565−1576.
[27] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics,69(4), 925−937.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[3] 孙鲁平, 刘展, 首皓, 张玉华. 基于相关搜索黄金分割重力密度反演的参数优选方法研究[J]. 应用地球物理, 2012, 9(2): 131-138.
[4] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司