APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 283-291    DOI: 10.1007/s11770-015-0508-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
航磁三轴梯度转换全张量梯度及应用
骆遥1,2,吴美平1,王平2,段树岭2,刘浩军2,王金龙2,安战锋2
1. 国防科学技术大学 机电工程与自动化学院,长沙 410073
2. 中国国土资源航空物探遥感中心,北京 100083
Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application
Luo Yao1,2, Wu Mei-Ping1, Wang Ping2, Duan Shu-Ling2, Liu Hao-Jun2, Wang Jin-Long2, and An Zhan-Feng2
1. College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China. 2. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China.
 全文: PDF (1497 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 磁张量梯度能提供地磁场矢量在三维空间的变化率信息,对地质构造研究、资源勘查、地磁导航等具有重要意义。但目前工程技术条件下磁张量梯度测量却很难实现,为此本文提出一种使用航磁三轴梯度资料计算磁张量梯度的方法,满足无法直接测量全张量梯度情况下对资料的需求。区别于单轴航磁梯度转换全张量梯度的方式,该法使用航磁三轴梯度数据进行转换,能充分利用磁异常模量在三维空间上的变化信息,获得自洽的磁张量梯度。理论模型计算表明该转换方法获得的全张量梯度数据具有较高的数值精度,能够满足实际资料处理的要求。我们选取河北保定地区实测的航磁三轴梯度资料进行全张量梯度资料转换,实际资料处理结果表明,联合三轴梯度进行全张量梯度转换能够有效利用磁异常在全空间的变化信息,压制三轴梯度资料中部分相互独立的噪声,从而提升转换后全张量梯度资料的品质,转换得到的航磁全张量梯度可作为一种地球物理场资料供地质解释使用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
骆遥
吴美平
王平
段树岭
刘浩军
王金龙
安战锋
关键词航磁梯度   全张量梯度   航磁全轴梯度勘查系统   张量不变量     
Abstract: The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
Key wordsAeromagnetic gradient   full magnetic gradient tensor   triaxial aeromagnetic gradiometer   tensor invariant   
收稿日期: 2014-01-21;
基金资助:

本研究由国家高技术研究发展计划(863计划)(编号:2013AA063901;2006AA06A201)资助。

引用本文:   
骆遥,吴美平,王平等. 航磁三轴梯度转换全张量梯度及应用[J]. 应用地球物理, 2015, 12(3): 283-291.
Luo Yao,Wu Mei-Ping,Wang Ping et al. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application[J]. APPLIED GEOPHYSICS, 2015, 12(3): 283-291.
 
[1] Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
[2] Chai, Y. P., 2009, A-E equation of potential field transformations in the wavenumber domain and its application: Applied Geophysics, 6(3), 205−216.
[3] Clark, D. A., 2013, New methods for interpretation of magnetic vector and gradient tensor data II: application to the Mount Leyshon anomaly, Queensland, Australia: Exploration Geophysics, 44(2), 114−127.
[4] Guo, Z. H., Guan, Z. N., and Xiong, S. Q., 2004, Cuboid ΔΤ and its gradient forward theoretical expressions without analytic odd points: Chinese J. Geophys. (in Chinese), 47(6), 1131−1138.
[5] Hood, P. J., and Teskey, D. J., 1989, Aeromagnetic gradiometer program of the Geological Survey of Canada: Geophysics, 54(8), 1012−1022.
[6] Hardwick, C. D., 1996, Aeromagnetic gradiometry in 1995: Exploration Geophysics, 27(1), 1-11.
[7] Luo, Y., and Yao, C. L., 2007, Theoretical study on cuboid magnetic field and its gradient expression without analytic singular point: Oil Geophysical Prospecting (in Chinese), 42(6), 714−719.
[8] Nelson, J. B., 1988, Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation: Geophysics, 53(7), 957-966.
[9] Pedersen, L. B., and Rasmussen, T. M., 1990, The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps: Geophysics, 55(12), 1558-1566.
[10] Stolz, R., Zakosarenko, V., Schulz, M., Chwala, A., Fritzsch, L., Meyer, H., -G., and Köstlin, E., O., 2006, Magnetic full-tensor SQUID gradiometer system for geophysical applications: The Leading Edge, 25(2), 178-180.
[11] Schmidt, P. W., and Clark, D. A., 2006, The magnetic gradient tensor: Its properties and uses in source characterization: The Leading Edge, 25(1), 75-78.
[1] 李霖, 郭华, 王平, 贾伟洁. 航磁梯度数据化极处理及其在不同纬度地区的适用性研究[J]. 应用地球物理, 2016, 13(1): 48-58.
[2] 侯振隆, 魏晓辉, 黄大年, 孙煦. 并行计算及其性能分析在重力全张量梯度数据反演中的应用[J]. 应用地球物理, 2015, 12(3): 292-302.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司