APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 244-254    DOI: 10.1007/s11770-015-0482-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于尾波干涉的储层时移特性监测方法研究
唐杰,李晶晶,姚振岸,邵婕,孙成禹
1. 中国石油大学(华东)地球科学与技术学院,青岛 266580
Reservoir time-lapse variations and coda wave interferometry
Tang Jie1, Li Jing-Jing1, Yao Zhen-An1, Shao Jie1, and Sun Cheng-Yu1
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
 全文: PDF (1029 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 尾波是持续时间比主要波型长得多的多重散射波,它包含了直达波之外的部分有用信号。在油气田的开采过程中,由储层物性参数的微小变化而导致的储层速度的微小变化对初至的影响很小,无法通过初至变化直接观测,但是因为尾波为多重散射波,故储层速度的微小变化会在尾波的传播过程中被放大,因此利用尾波可以观测到这种变化。本文通过实验与数值模拟研究了尾波干涉方法在储层微小时移差异监测方面的有效性。合成地震数据是基于部分Marmousi II模型采用有限差分波动方程正演方法计算获得,为了模拟时移地震中的储层波速变化,在模型中选取波速发生微小变化的目标区,计算速度扰动前后的合成地震数据,进而观测尾波变化。研究表明利用尾波干涉可检测储层物性的微小变化,为时移地震信号监测提供新的方法和手段,从而提高时移监测的准确度,也为开发生产工作提供可靠的指导。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐杰
李晶晶
姚振岸
邵婕
孙成禹
关键词time-lapse   coda wave   interferometry   wave velocity   scattering     
Abstract: Coda waves are multiply scattered waves that arrive much later than the major waves. Small seismic velocity variations are observed in reservoirs because of small variations in reservoir properties, which affect the first arrivals. Hence, first arrivals cannot be used to detect small seismic velocity variations. However, small variations can be reliably detected by the coda waves because of the amplification owing to multiple scattering. We investigate the ability of coda wave interferometry to detect seismic velocity variations and monitor time-lapse reservoir characteristics using numerical simulations and experimental data. We use the Marmousi II model and finite-difference methods to build model seismic data and introduce small seismic velocity variations in the target layer. We examine the model seismic data before and after the changes and observe the coda waves. We find that velocity changes can be detected by coda wave interferometry and demonstrate that coda wave interferometry can be used in monitoring time-lapse reservoir characteristics.
Key wordstime-lapse   coda wave   interferometry   wave velocity   scattering   
收稿日期: 2014-05-05;
基金资助:

本研究由国家自然科学基金(编号:41374123)、国家973(编号:2013CB228604)、中心大学基础研究基金 (编号:15CX08002A)和山东省自然科学基金(编号:ZR2013DQ020)资助。

引用本文:   
唐杰,李晶晶,姚振岸等. 基于尾波干涉的储层时移特性监测方法研究[J]. 应用地球物理, 2015, 12(2): 244-254.
Tang Jie,Li Jing-Jing,Yao Zhen-An et al. Reservoir time-lapse variations and coda wave interferometry[J]. APPLIED GEOPHYSICS, 2015, 12(2): 244-254.
 
[1] Aki, K., 1969, Analysis of the seismic coda of local earthquakes as scattered wave: Journal of Geophysical Research, 74(2), 615-631.
[2] Aki, K., and Chouet, B., 1975, Origin of coda waves: Source, attenuation, and scattering effects: Journal of Geophysical Research, 80(23), 3322-3342.
[3] Aki, K., 1985, Theory of earthquake prediction with special reference to monitoring of the quality factor of lithosphere by the coda method: Practical Approaches to Earthquake Prediction and Warning, Springer Netherlands, 219-230.
[4] An S. P., Hu T. Y., Cui, Y. F., Duan, W. S., and Peng, G. X., 2015, Auto-pick first breaks with complex raypaths for undulate surface conditions: Applied Geophysics, 12(1), 93-100.
[5] Cheng, N., 1994, Borehole wave propagation in isotropic and anisotropic media: three-dimension finite difference approach: PhD Thesis, Massachusetts Institute of Technology.
[6] Chouet, B., 1979, Temporal variation in the attenuation of earthquake coda near Stone Canyon, California: Geophysical Research Letters, 6(3), 143-146.
[7] Grêt, A., Snieder, R., Aster, R. C., and Kyle, P. R., 2005, Monitoring rapid temporal change in a volcano with coda wave interferometry: Geophysical Research Letters, 32(6).
[8] Grêt, A., Snieder, R., and Scales, J., 2006, Time-lapse monitoring of rock properties with coda wave interferometry: Journal of Geophysical Research: Solid Earth (1978-2012), 111(B3).
[9] Kanu, C., Snieder, R., and Pankow, C., 2014. Time-lapse monitoring of velocity changes in Utah, Journal Geophysics Research Solid Earth, 119, (9), 7209-7225.
[10] Lumley, D. E., 2001, Time-lapse seismic reservoir monitoring: Geophysics, 66(1), 50-53.
[11] Pacheco, C., and Snieder, R., 2005, Time-lapse travel time change of multiply scattered acoustic waves: The Journal of the Acoustical Society of America, 118(3), 1300-1310.
[12] Pacheco, C., and Snieder, R., 2006, Time-lapse travel time change of singly scattered acoustic waves: Geophysical Journal International, 165(2), 485-500.
[13] Qiao, B. P., Guo P., Wang, P., and Hu, T. Y., 2014, Effectively picking weak seismic signal near the surface based on reverse virtual refraction interferometry. Chinese Journal Geophysics, 57(6), 1900-1909.
[14] Ratdomopurbo, A., and Poupinet, G., 1995, Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia): Geophysical Research Letters, 22(7), 775-778.
[15] Roberts, P. M, Phillips, W. S., and Fehler, M. C., 1992, Development of the active doublet method for measuring small velocity and attenuation changes in solids: The Journal of the Acoustical Society of America, 91(6), 3291-3302.
[16] Robinson, R., 1987, Temporal variations in coda duration of local earthquakes in the Wellington region, New Zealand: Pure and Applied Geophysics, 125(4), 579-596.
[17] Ross, C. P., Cunningham, G. B., and Weber, D. P., 1996, Inside the crossequalization black box: The Leading Edge, 15(11), 1233-1240.
[18] Santos, E. T. F., and Harris, J. M., 2007, Time-lapse diffraction tomography for trigonal meshes with temporal data integration applied to CO2 sequestration monitoring: 77th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts. 26, 2959-2963.
[19] Sato, H., 1986, Temporal change in attenuation intensity before and after the eastern Yamanashi earthquake of 1983 in Central Japan: Journal of Geophysical Research: Solid Earth (1978-2012), 91(B2), 2049-2061.
[20] Snieder, R., 2006, The theory of coda wave interferometry: Pure and Applied Geophysics, 163(2-3), 455-473.
[21] Snieder, R., Greˆt, A., Douma, H., and Scales, J., 2002, Coda wave interferometry for estimating nonlinear behavior in seismic velocity: Science, 295(5563), 2253-2255.
[22] Snieder, R., and Vrijlandt, M., 2005, Constraining relative source locations with coda wave interferometry: Theory and application to earthquake doublets in the Hayward Fault, California: AGU Fall Meeting Abstracts, 1, 1020.
[23] Song, L. L., Ge, H. K., Guo, Z. W., and Wang, X. Q., 2012, Experimental study on the variation of media properties monitoring using multiple scattering waves: Chinese Journal of Rock Mechanics and Engineering, 31(4), 713-722.
[24] Wang, B. L., Zhu, G. M., and Gao, J. H., 2010, Joint interferometric imaging of walkaway VSP data: Applied Geophysics, 6(1), 41-48.
[25] Wang, B. S., Zhu, P., Chen, Y., Niu, F., and Wang, B., 2008, Continuous subsurface velocity measurement with coda wave interferometry: Journal of Geophysical Research, 113(B12).
[26] Weaver, R. L., and Lobkis, O. I., 2000, Temperature dependence of diffuse field phase: Ultrasonics, 38(1), 491-494.
[27] Wegler, U., 2004, Diffusion of seismic waves in a thick layer: Theory and application to Vesuvius volcano: Journal of Geophysical Research, 109(B7).
[28] Wu, R. S., and Aki, K., 1985, Scattering characteristics of elastic waves by an elastic heterogeneity: Geophysics, 50(4), 582-595.
[29] Zhou, R. M., Huang, L. J., Rutledge, J. T., Fehler, M., and Daley, T. M., 2010, Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration: International Journal of Greenhouse Gas Control, 4(4), 679-686.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司