APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 235-243    DOI: 10.1007/s11770-015-0488-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
广义炮检距地震菲涅耳带横向叠加波场研究
田楠,范廷恩,王宗俊,蔡文涛
中海油研究总院,北京 100027
Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case
Tian Nan1, Fan Ting-En1, Wang Zong-Jun1, and Cai Wen-Tao1
1. CNOOC Research Institute, Room 507, CNOOC Plaza B, Taiyanggongnanjie#6, Chaoyang District, Beijing 100028, China.
 全文: PDF (719 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 便于不同观测系统的统一,本文定义了广义炮检距概念,给出了空间平界面广义炮检距不同阶地震菲涅耳带表达式。基于波动理论,推导出了广义炮检距地震菲涅耳带横向叠加波场公式。以不同阶几何菲涅耳带形状为参考,分为零炮检距和非零炮检距情况,进行了相似菲涅耳带不同绕射面元大小的横向叠加振幅分析。结果表明:①绕射面元对观测点的波场贡献与炮检距、地表起伏程度、界面倾斜程度、激发点到界面深度、观测方式和干涉叠加区大小等因素有关;②第一菲涅耳带是主要绕射波干涉叠加区,并且该区域对观测点的半振幅贡献约小于所有阶菲涅耳带的振幅贡献;③当绕射面元小于第一菲涅耳带时,即使采用非自激自收观测方式,仍有绕射面元越大观测点振幅越大的结论。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
田楠
范廷恩
王宗俊
蔡文涛
关键词炮检距   菲涅耳带   波动理论   叠加   振幅     
Abstract: To unify different seismic geometries, the concept of generalized offset is defined and the expressions for Fresnel zones of different order on a plane are presented. Based on wave theory, the equation of the lateral wave-field stacking for generalized-offset Fresnel zones is derived. For zero and nonzero offsets, the lateral stacking amplitude of diffraction bins of different sizes is analyzed by referring to the shape of the Fresnel zones of different order. The results suggest the following. First, the contribution of diffraction bins to wave-field stacking is related to the offset, surface relief, interface dip, the depth of the shot point to the reflection interface, the observational geometry, and the size of the interference stacking region. Second, the first-order Fresnel zone is the main constructive interference, and its contribution to the reflection amplitude is slightly smaller than half the contribution of all Fresnel zones. Finally, when the size of the diffraction bin is smaller than the first-order Fresnel zone, the larger the size of the diffraction bin, the larger is the amplitude of the receiver, even in the nonzero offset-case.
Key wordsOffset   Fresnel zone   wave theory   stacking   amplitude   
收稿日期: 2014-09-18;
基金资助:

本研究由国家十二五重大专项项目(编号:2011ZX05024-001)资助。

引用本文:   
田楠,范廷恩,王宗俊等. 广义炮检距地震菲涅耳带横向叠加波场研究[J]. 应用地球物理, 2015, 12(2): 235-243.
Tian Nan,Fan Ting-恩,Wang Zong-Jun et al. Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case[J]. APPLIED GEOPHYSICS, 2015, 12(2): 235-243.
 
[1] Aki, K. and Richards, P. G., 1980, Quantitative seismology: W. H. Freeman and Co.
[2] Gao, D. L., 2012, Implications of the Fresnel-zone texture for seismic amplitude interpretation: Geophysics, 77(4), O35−O44.
[3] Goertz, A., Milligan, P., Karrenbach, M., and Paulsson, B., 2005, Optimized 3D VSP survey geometry based on Fresnel zone estimates: 75th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2641−2644.
[4] Luo, B., Liu, X. W., and Yin, J. X., 2005, The effect of offset on the resolution of seismic survey: Geophysical Prospecting for Petroleum, 44(1), 16−20.
[5] Qin, T., Duan, Y. Q., and Zhao, Y., 2006, Application of attribute parameter of common reflection surface (CRS) stack wave field: Oil Geophysical Prospecting, 41(5), 530−533.
[6] Schleicher, J., Hubral, P., Tygel, M., and Jaya, M. S., 1997, Minimum apertures and Fresnel zones in migration and demigration: Geophysics, 62(1), 183−194.
[7] Sheriff, R. E., 1980, Nomogram for Fresnel-zone calculation: Geophysics, 45, 968-972.
[8] Sheriff, R. E. and Geldart L. P., 1982, Exploration seismology: Cambridge University Press.
[9] Shi, Y. M., Yao, F. C., and Liu, Y. L., 2005, Feasibility of time-lapse seismic monitoring in long-period water-drive continental facies classic rock reservoir: Oil Geophysical Prospecting, 40(3), 328−333.
[10] Spetzler, J., Jocker, J., and Smeulders, D., 2004, Validation of first-order wave diffraction theory by an ultrasonic experiment: 74th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2180-2183.
[11] Sun, C. Y., 2005, Study of non-zero offset Fresnel zone: Journal of the University of Petroleum, China, 29(1), 26−29.
[12] Sun, S. and Bancroft, J. C., 2003, The effect of the Fresnel zone size on AVO analysis for stack data: 73rd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 223−226.
[13] Yilmaz, O., 2001, Seismic data analysis: processing, inversion, and interpretation of seismic data (Volume II): USA: Society of Exploration Geophysicists.
[14] Yuan, S. Y., Wang, S. X., Sun, W. J., Miao, L. N., and Li, Z. H., 2014, Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation: Exploration Geophysics, 45(2), 94−104.
[15] Zhang, K., Yin, Z., Li, Z. C., and Chen, Y. R., 2013, Wave equation tomographic velocity inversion method based on the Born/Rytov approximation: Applied Geophysics, 10(3), 314−322.
[16] Zhou, W., Brossier, R., Operto, S., and Virieux, J., 2014, Acoustic multiparameter Full-waveform Inversion of diving and reflected waves through a hierarchical scheme: 84th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1249−1253.
[1] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[2] 刘学清,王彦春,张贵宾,马胜利,成丽芳,余文武. 叠前FAGVO计算方法及应用[J]. 应用地球物理, 2016, 13(4): 641-648.
[3] Mohammad Mahdi Abedi, Siyavash Torabi. 基于剩余动校正拉伸补偿的改进子波估计方法研究[J]. 应用地球物理, 2015, 12(4): 598-604.
[4] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[5] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[6] 赫建伟, 陆文凯, 李钟晓. 一种自适应上下缆地震数据合并技术[J]. 应用地球物理, 2013, 10(4): 469-476.
[7] 韩复兴, 孙建国, 王坤. 海水速度变化对地震波走时、射线路径及振幅的影响[J]. 应用地球物理, 2012, 9(3): 319-325.
[8] 郭书娟, 李振春, 仝兆岐, 马方正, 刘建辉. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
[9] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[10] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
[11] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 6(1): 18-30.
[12] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 7(1): 18-30.
[13] 隋风贵, 隋淑玲, 李振春, 孙小东, 李芳, 李栋. 基于最优孔径的共反射面元(CRS)叠加[J]. 应用地球物理, 2009, 6(4): 347-353.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司