APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 255-262    DOI: 10.1007/s11770-015-0492-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
用于静冰压力检测的新型膜盒式光纤传感器的研制
崔丽琴1,龙欣3,秦建敏1,2
1. 太原理工大学物理与光电工程学院,太原 030024
2. 太原理工大学新型传感器与智能控制教育部与山西省重点实验室,太原 030024
3. 上海航天电子技术研究所,上海 201108
A bellow pressure fiber optic sensor for static ice pressure measurements
Cui Li-Qin1, Long Xin3, and Qin Jian-Min1,2
1. College of Physics and Optoelectronic, Taiyuan University of Technology, Taiyuan 030024, China.
2. Key Laboratory Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
3. Shanghai Aerospace Electronic Technology Institute, Shanghai 201108, China.
 全文: PDF (624 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 静冰压力是影响水工结构物安全运行的主要因素之一。现有静冰压力检测方法主要存在两个局限,一是实时性差,二是传统电阻应变式压力膜盒传感器因边壁效应影响测量结果的正确性。针对以上两个不足之处,作者基于反射式强度调制原理,研发了一种带杆伞状圆盘结构的压力膜盒静冰压力光纤传感器,实现了利用光纤传感技术检测静冰压力。我们用研制的新型光纤传感器在实验室完成了−30°C ~ 5°C温度范围内冰生长过程中及5°C ~ −30°C温度范围内冰消融过程中静冰压力的测量试验。实验结果表明,与传统电阻应变式压力膜盒传感器相比,该传感器工作稳定、分辨率达0.02 kPa、灵敏度达2.74×10-4/kPa,并可实现自动连续测量。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔丽琴
龙欣
秦建敏
关键词静冰压力   压力膜盒   光纤传感器   改进Y型光纤束     
Abstract: Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from −30°C to 5°C. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10−4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to −15°C owing to the liquid water to solid ice transition. The second peak appears at 0°C owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.
Key wordsStatic ice pressure   pressure bellow   fiber optic sensor   improved Y-type fiber bundle   
收稿日期: 2014-12-15;
基金资助:

本研究由国家自然科学基金(编号:51279122)和太原理工大学研究生创新基金(编号:2013A019)联合资助。

引用本文:   
崔丽琴,龙欣,秦建敏. 用于静冰压力检测的新型膜盒式光纤传感器的研制[J]. 应用地球物理, 2015, 12(2): 255-262.
Cui Li-Qin,Long Xin,Qin Jian-Min. A bellow pressure fiber optic sensor for static ice pressure measurements[J]. APPLIED GEOPHYSICS, 2015, 12(2): 255-262.
 
[1] Barrette, P. D., and Jordaan, L. J., 2003, Pressure-temperature effects on the compressive behavior of laboratory-grown and iceberg ice: Cold Regions Science and Technology, 36(1), 25-36.
[2] Bjerkan, L., 2000, Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines: Applied Optics, 39(4), 554-560.
[3] Carter, D., Sodhi, D., Stander, E., Caron, O., and Quach, T., 1998, Ice thrust in reservoirs: Journal of Cold Regions Engineering, 12, 169-183.
[4] Cheng, Y. C., and Tian, X., 2008, The investigation of FBG sensor system for the transmission line icing measurement: International Conference on High Voltage Engineering and Application, 154-157.
[5] Ge, J. F., Ye, L., and Zou, J. H., 2012, A novel fiber-optic ice sensor capable of identifying ice type accurately: Sensors and Actuators A: Physical, 175, 35-42.
[6] Huang, Y., Shi, Q. Z., and Song, A., 2005, Analysis of ice thermal expansive pressure by using FEM: Journal of Hydraulic Engineering (in Chinese), 36(3), 314-320.
[7] Ikiades, A. A., Armstrong, D. J., Hare, G. G., Konstantaki, M., and Crossley, S., 2003, Fibre optic sensor technology for air conformal ice detection: Proceedings of the Society of Photo-optical Instrumentation Engineers, 5272, 357-368.
[8] Ikiades, A. A., Howard, G., Armstrong, D. J., Konstantaki, M., and Crossley, S., 2007, Measurement of optical diffusion properties of ice for direct detection ice accretion sensors: Sensors and Actuators A: Physical, 140, 24-31.
[9] Ikiades, A. A., Spasopoulos, D., Amoiropoulos, K., Richards, T., Howard, G., and Pfeil, M., 2013, Detection and rate of growth of ice on aerodynamic surfaces using its optical characteristics: Aircraft Engineering and Aerospace Technology, 85(6), 443-452.
[10] Jia, Z. G., Ren, L., Li, D. S., Zhang, D. D., and Li, H. N., 2011, Design and application of the ice force sensor based on fiber bragg grating: Measurement, 44, 2090-2095.
[11] Li, Z. J., Wang, Y. X., and Li, G. W., 2002, On the flexural strength of DUT-1 synthetic model ice: Cold Regions Science and Technology, 35(2), 67-72.
[12] Liu, X. Z., Tan, Y. G., Li, H. S., and Bai, H. R., 2013, Test and fracture toughness analysis for static ice pressure of reservoir slope: Engineering Mechanics, 30(5), 112-117, 124.
[13] Lu, W. J., Lubbad, R., Høyland, K., and Løset, S., 2014, Physical model and theoretical model study of level ice and wide sloping structure interactions: Cold Regions Science and Technology, 101, 40-72.
[14] Ma, G. M., Li, C. R., Jiang, J., Luo, Y. T., and Cheng, Y. C., 2012, A novel optical load cell used in icing monitoring on overhead transmission lines: Cold Regions Science and Technology, 71, 67-72.
[15] Paavilainen, J., and Tuhkuri, J., 2013, Pressure distributions and force chains during simulated ice rubbling against sloped structures: Cold Regions Science and Technology, 85, 157-174.
[16] Ruiz-Llata, M., and Acedo, P., 2011, Remote ice detection system for on-board applications based on fiber optics: Proceedings of the Society of Photo-optical Instrumentation Engineers, 7753, doi: 10.1117/12.885919.
[17] Stander, E., 2006, Ice stresses in reservoirs: effect of water level fluctuations: Journal of Cold Regions Engineering, 20(2), 52-67.
[18] Sui, J. P., Sui, J. S., and Shi, X. K., 1998, Design and evaluation of the reservoir ice plate static ice pressure: Heilongjiang Science and Technology of water Conservancy (in Chinese), 3, 43-46, 49.
[19] Xu, B. M., 1985, Inflationary pressure its calculation in reservoir ice: Water Resources and Hydropower Engineering (in Chinese), 11, 16-21.
[20] Xu, Z. L., 1982, Elasticity: People’s Education Press, China, 90-92.
[21] Yan, S., 2004, Fundamental Digital Electronic Technique: Higher Education Press, China.
[22] Zhang, L. M., Li, Z. J., Jia, Q., and Li, G. W., 2009, Experimental study on uniaxial compressive strengths of artificial freshwater ice: Journal of Hydraulic Engineering (in Chinese), 40(11), 1392-1396.
[23] Zhang, M., Xing, Y. M., Zhang, Z. G., and Chen, Q. G., 2014, Design and experiment of FBG-based icing monitoring on overhead transmission lines with an improvement trial for windy weather: Sensors, 14(12), 23954-23969.
[24] Zou, J. H., Ye, L., Ge, J. F., and Zhao, C. R., 2013, Novel ?ber optic sensor for ice type detection: Measurement, 46, 881-886.
[1] 陶果, 张向林, 刘新茹, 陈少华, 刘统玉. 光纤Bragg光栅地震检波器的传感特性研究[J]. 应用地球物理, 2009, 6(1): 84-92.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司