APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 11-17    DOI: 10.1007/s11770-010-0267-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
泥质含量及其分布形式对岩电关系影响的数字岩心仿真
岳文正1,陶果1,柴细元2,崔冬子3
1. 国家油气资源与探测重点实验室,北京地球探测与信息技术重点实验室,中国石油大学(北京),北京 102249;
2.中石油渤海钻探工程有限公司大港测井分公司,天津 300280;
3. 中国石油集团长城钻探工程有限公司钻井技术服务公司,盘锦 124010
Digital core approach to the effects of clay on the electrical properties of saturated rocks using lattice gas automation
Yue Wen-Zheng1, Tao Guo1, Chai Xi-Yuan2, and Cui Dong-Zi3
1. State Key Laboratory of Petroleum Resource and Prospecting, Key Laboratory of Earth Prospecting and Information Technology, CNPC Key Lab of Well Logging, China University of Petroleum, Beijing 102249, China.
2. Bohai Drilling Engineering Company LTD Logging Company, Tianjin 300280, China.
3. PetroChina GWDC Drilling Technology Services Company, Panjin 124010, China.
 全文: PDF (443 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于泥质所造成的附加导电现象,泥质含量及其分布形式对电阻率增大系数I和含水饱和度Sw关系具有重要影响,由于岩石物理实验中岩心孔隙结构及其组分构成、分布的微观不可调性,因而泥质分布形式所造成的影响很难通过岩心实验来单独研究。基于数字岩心的格子气自动机方法是一种有效的微观数值模拟方法,本研究利用储层岩心薄片的骨架颗粒尺寸信息资料建立数字岩心模型,结合格子气自动机技术对数字岩心不同饱和流体情况下电的传输特性进行数值模拟研究,揭示了不同泥质含量和泥质分布形式对孔隙介质导电特性非阿尔奇现象产生的影响,建立饱和度指数和泥质含量之间的关系模型,其良好的吻合性表明该方法在岩石物理研究中是一种十分有效的研究方法,而新模型适于在非阿尔奇储层进行准确的饱和度评价。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳文正
陶果
柴细元
崔冬子
关键词格子气自动机   数字岩心   非阿尔奇现象   泥质含量     
Abstract: Clay has a significant influence on the relationship between resistivity index I and water saturation Sw (i.e, I-Sw relationship) of reservoir rocks because it complicates the current paths of these rocks. It is difficult to reveal the physical mechanisms of these clay effects on the conductivities of various rocks by physical laboratory measurements because the pore structure, micro distribution and content of clay inside a rock can not be observed and controlled during the experiments. We present a digital rock approach to study these clay effects on the electrical transport properties of reservoir rocks at pore scale using lattice gas automation (LGA) method. The digital rock samples are constructed with the information of grain size distribution from SEM images of reservoir rocks. The LGA is then applied on these digital rocks fully saturated with fluids to simulate the electrical transport properties for revealing the effects of volume and distribution patterns of clay on the non-Archie behaviors of the I-Sw relationship. The very good agreement between the simulated results and the laboratory measurements clearly demonstrates the validity of the LGA in numerical research of rock physics. Based on these studies, a new model has been developed for quantitatively describing the relationship between the saturation exponent and the volume of clay (Vsh). This development may improve the evaluation for the fluid saturations in reservoir rocks.
Key wordsLattice gas automation   Digital rock   non-Archie behavior of I-Sw relationship   clay content   
收稿日期: 2010-09-17;
基金资助:

国家自然科学基金(编号:41074103);国家重点基础研究专项(编号:2007CB209601),中石油研究项目(编号:06A30102)联合资助。

引用本文:   
岳文正,陶果,柴细元等. 泥质含量及其分布形式对岩电关系影响的数字岩心仿真[J]. 应用地球物理, 2011, 8(1): 11-17.
YUE Wen-Zheng,TAO Guo,CHAI Xi-Yuan et al. Digital core approach to the effects of clay on the electrical properties of saturated rocks using lattice gas automation[J]. APPLIED GEOPHYSICS, 2011, 8(1): 11-17.
 
[1] Adler, P. M., Jacquin, C. G., and Thovert, J. F., 1992, The formation factor of reconstructed porous-media: Water Resources Research, 28(6), 1571 - 1576.
[2] Al-kaabi, A. U., Mimoune, K., and Al-Yousef H. Y., 1997, Effect of hysteresis on them Archie saturation exponent: The SPE 10th Middle East Oil Show & Conference, Bahrain, March 15 - 18, SPE 37738, 497 - 503.
[3] Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. Am. Inst. Mech. Eng., 146, 54 - 61.
[4] Frisch, U., Hasslacher, B., and Pomeau, Y., 1986, Lattice gas automation for the Navier-Stokes equation: Phys. Rev. Lett, 56,1505 - 1507.
[5] Hardy, J., Pomeau, Y., and Pazzis, O. De., 1976, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions: Phys. Rev. A, 13, 1949 - 1960.
[6] Okabea, H., and Blunt, M. J., 2005, Pore space reconstruction using multiple-point statistics: Journal of Petroleum Science and Engineering, 46, 121 - 137.
[7] Jing, X. D., Gillesple, A., and Trewin, B. M., 1993, Resistivity index from non-equilibrium measurements using detailed in-situ saturation monitoring: SPE Offshore European Conference, Aberdeen, 456 - 464.
[8] Küntz, M., Mareschal, J. C., and Lavall´ee, P., 2000, Numerical Estimation of Electrical Conductivity in Saturated Porous Media With 2D Lattice Gas: Geophysics, 65(3), 766 - 772.
[9] 李宁, 1989, 电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(I),地球物理学报, 32(5), 580 - 591.
[10] Liu, X. F., Sun, J. M., and Wang H.T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1 - 7.
[11] Man, H. N., and Jing, X.D., 2001, Network modeling of strong and intermediate wettability on electrical resistivity and capillary pressure: Advances in Water Resource, 24, 345 - 363.
[12] Oren, P. E., and Bakke, S., 2002, Process based reconstruction of sandstones and prediction of transport properties: Transport in Porous Media, 46(2 - 3), 311 - 343.
[13] Pilotti, M., 2000, Reconstruction of clastic porous media: Transport in Porous Media, 41(3), 359 - 364.
[14] Rothman, D., 1988, Cellular automation fluids: a model for flow in porous media. Geophysics, 53, 509 - 518.
[15] Tao, G., 1992, Elastic and transport properties of some sandstones: PhD’s thesis, London: Imperial College of Science, Technology & Medicine, University of London, Lodon.
[16] Yale, D. P., 1984, Network modeling of flow storage and deformation in porous rocks: PhD’s thesis, Stanford University, California.
[17] 雍世和, 张超谟, 1996. 测井数据处理与综合解释: 石油大学出版社, 山东.
[18] Yue, W. Z., Tao, G., Wang, S. X., and Tian, B., 2010, 2-D Numerical simulation of digital rock experiments with lattice gas automation for electrical properties of reservoir formation: Geophysical Journal International, 183(3), 1316 - 1323.
[1] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[2] 朱伟,单蕊. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
[3] 刘学锋, 孙建孟, 王海涛. 混合法重建三维数字岩心研究[J]. 应用地球物理, 2009, 6(2): 105-112.
[4] 刘学锋, 孙建孟, 王海涛. 基于数字岩心的岩石电性微观数值模拟[J]. 应用地球物理, 2009, 6(1): 1-7.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司