Three-dimensional conjugate gradient inversion of magnetotelluric full information data
Lin Chang-Hong1,2,3, Tan Han-Dong1,2,3, and Tong Tuo1,2,3
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China.
Abstract:
Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from fi ve electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
LIN Chang-Hong,TAN Han-Dong,TONG Tuo. Three-dimensional conjugate gradient inversion of magnetotelluric full information data[J]. APPLIED GEOPHYSICS, 2011, 8(1): 1-10.
[1]
Avdeev, D. B., and Avdeeva, A. D., 2006, A rigorous three-dimensional magnetotelluric inversion: Progress in Electromagnetics Research, 62, 41 - 48.
[2]
Becken, M., Ritter, O., and Burkhardt, H., 2008, Mode separation of magnetotelluric responses in three-dimensional environments: Geophys. J. Int., 172, 67 - 86.
[3]
Berdichevsky, M. N., Dmitriev, V. I., Golubtsova, N. S., Mershchikova, N. A., and Pushkarev, P. Yu., 2003, Magnetovariational sounding: new possibilities, Izvestiya: Physics of the Solid Earth, 39(9), 701 - 727.
[4]
DeGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55(12), 1613 - 1624.
[5]
Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate gradients: Comp. J., 7, 149-154.
Jupp, D. L. B., and Vozoff, K., 1977, Two-dimensional magnetotelluric inversion: Geophys. J. Roy. Astr. Soc., 50, 333 - 352.
[8]
Lin, C. H., Tan, H. D., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[9]
Lin, C. H., Tan, H. D., and Tong, T., 2009, Parallel rapid relaxation inversion of 3D magnetotelluric data: Applied Geophysics, 6(1), 77 - 83.
[10]
Madden, T. R., and Mackie, R. L., 1989, Three-dimensional magnetotelluric modeling and inversion: Proc. IEEE, 77, 318 - 333.
[11]
Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215 - 229.
[12]
Newman, G. A., and Alumbaugh, D. L., 1997, Three-dimensional massively parallel electromagnetotelluric inversion - I. Theory: Geophys. J. Int., 128, 345 - 354.
[13]
Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[14]
Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174 - 187.
[15]
Spichak, V., and Popova, 2000, Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters: Geophys. J. Int., 142, 15 - 26.
[16]
Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65, 791 - 803.
[17]
Siripunvaraporn, W., and Egbert, G., 2009, Vertical magnetic ?eld transfer function inversion and parallel implementation: Physics of the Earth and Planetary Interiors, 173, 317 - 329.
[18]
Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1 - 3), 3 - 14.
[19]
Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res, 96(B3), 3905 - 3922.
Tuncer, V., Unsworth, M. J., Siripunvaraporn, W., and Craven, J. A., 2006, Exploration for unconformity type uranium deposits with audio-magnetotelluric data: A case study from the McArthur River Mine, Saskatchewan (Canada): Geophysics, 71(6), B201 - B209.
[24]
Zhdanov, M. S., Fang, S., and Hursan, G., 2000, Electromagnetic inversion using quasi-linear approximation: Geophysics, 65(5), 1501 - 1513.