APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 1-10    DOI: 10.1007/s11770-010-0266-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
大地电磁全信息资料三维共轭梯度反演研究
林昌洪1,2,3,谭捍东1,2,3,佟拓1,2,3
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;
2. 中国地质大学地下信息探测技术与仪器教育部重点实验室,北京 100083;
3. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
Three-dimensional conjugate gradient inversion of magnetotelluric full information data
Lin Chang-Hong1,2,3, Tan Han-Dong1,2,3, and Tong Tuo1,2,3
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China.
 全文: PDF (538 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在对张量阻抗数据、倾子数据和共轭梯度算法深入分析的基础上,我们实现了大地电磁全信息资料三维共轭梯度反演算法。基于全信息资料的三维共轭梯度反演研究,探讨了同时利用五个电磁场分量整理得到的大地电磁资料进行三维反演定量解释的方法以及全信息数据在三维反演中的作用。理论模型合成数据的反演结果表明,在三维反演中使用张量阻抗和倾子数据结合的全信息数据的反演结果优于只使用张量阻抗数据(或只使用倾子数据)的反演结果,提高了反演结果的分辨率和可信度。合成数据的反演算例也验证了所实现的大地电磁全信息资料三维共轭梯度反演算法的正确性和稳定性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林昌洪
谭捍东
佟拓
关键词大地电磁   倾子   三维反演   共轭梯度     
Abstract: Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from fi ve electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
Key wordsMagnetotelluric   full information data   3D inversion   conjugate gradient   
收稿日期: 2010-09-30;
基金资助:

国家高技术研究发展计划(863计划)(编号:2007AA09Z310),国家自然科学基金项目(编号:40774029,40374024),中央高校基本科研业务费专项资金资助项目(编号:2010ZY53)和教育部新世纪优秀人才计划联合资助。

引用本文:   
林昌洪,谭捍东,佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
LIN Chang-Hong,TAN Han-Dong,TONG Tuo. Three-dimensional conjugate gradient inversion of magnetotelluric full information data[J]. APPLIED GEOPHYSICS, 2011, 8(1): 1-10.
 
[1] Avdeev, D. B., and Avdeeva, A. D., 2006, A rigorous three-dimensional magnetotelluric inversion: Progress in Electromagnetics Research, 62, 41 - 48.
[2] Becken, M., Ritter, O., and Burkhardt, H., 2008, Mode separation of magnetotelluric responses in three-dimensional environments: Geophys. J. Int., 172, 67 - 86.
[3] Berdichevsky, M. N., Dmitriev, V. I., Golubtsova, N. S., Mershchikova, N. A., and Pushkarev, P. Yu., 2003, Magnetovariational sounding: new possibilities, Izvestiya: Physics of the Solid Earth, 39(9), 701 - 727.
[4] DeGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55(12), 1613 - 1624.
[5] Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate gradients: Comp. J., 7, 149-154.
[6] 胡祖志, 胡祥云, 何展翔, 2006, 大地电磁非线性共轭梯度拟三维反演: 地球物理学报, 49(4), 1226 - 1234.
[7] Jupp, D. L. B., and Vozoff, K., 1977, Two-dimensional magnetotelluric inversion: Geophys. J. Roy. Astr. Soc., 50, 333 - 352.
[8] Lin, C. H., Tan, H. D., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[9] Lin, C. H., Tan, H. D., and Tong, T., 2009, Parallel rapid relaxation inversion of 3D magnetotelluric data: Applied Geophysics, 6(1), 77 - 83.
[10] Madden, T. R., and Mackie, R. L., 1989, Three-dimensional magnetotelluric modeling and inversion: Proc. IEEE, 77, 318 - 333.
[11] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215 - 229.
[12] Newman, G. A., and Alumbaugh, D. L., 1997, Three-dimensional massively parallel electromagnetotelluric inversion - I. Theory: Geophys. J. Int., 128, 345 - 354.
[13] Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[14] Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174 - 187.
[15] Spichak, V., and Popova, 2000, Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters: Geophys. J. Int., 142, 15 - 26.
[16] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65, 791 - 803.
[17] Siripunvaraporn, W., and Egbert, G., 2009, Vertical magnetic ?eld transfer function inversion and parallel implementation: Physics of the Earth and Planetary Interiors, 173, 317 - 329.
[18] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1 - 3), 3 - 14.
[19] Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res, 96(B3), 3905 - 3922.
[20] 谭捍东, 余钦范, Booker, J., 魏文博, 2003a, 大地电磁法三维交错采样有限差分数值模拟: 地球物理学报, 46(5), 705 - 711.
[21] 谭捍东, 余钦范, Booker, J., 魏文博, 2003b, 大地电磁法三维快速松弛反演: 地球物理学报, 46(6), 850 - 855.
[22] 谭捍东, 魏文博, 邓明, 金盛, 大地电磁法张量阻抗通用计算公式: 石油地球物理勘探, 39(1), 113 - 116.
[23] Tuncer, V., Unsworth, M. J., Siripunvaraporn, W., and Craven, J. A., 2006, Exploration for unconformity type uranium deposits with audio-magnetotelluric data: A case study from the McArthur River Mine, Saskatchewan (Canada): Geophysics, 71(6), B201 - B209.
[24] Zhdanov, M. S., Fang, S., and Hursan, G., 2000, Electromagnetic inversion using quasi-linear approximation: Geophysics, 65(5), 1501 - 1513.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[3] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[4] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[5] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[6] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[7] 王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用[J]. 应用地球物理, 2017, 14(2): 301-313.
[8] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[9] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[10] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[11] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[12] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[13] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[14] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[15] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司