APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (1): 18-26    DOI: 10.1007/s11770-010-0244-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于非稳态多项式拟合的地震噪声衰减方法研究
刘国昌1,2,陈小宏1,2,李景叶1,2,杜婧3,宋家文1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京,昌平 102249;
2. 中国石油大学(北京)CNPC物探重点实验室,北京,昌平 102249;
3. 中国石化胜利油田有限公司物探研究院,山东,东营 257022
Seismic noise attenuation using nonstationary polynomial fitting
Liu Guo-Chang1,2, Chen Xiao-Hong1,2, Li Jing-Ye1,2, Du Jing3, and Song Jia-Wen1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Beijing 102249, China.
3. Shengli Geophysical Research Institute of SINOPEC, Shandong, Dongying, 257022, China.
 全文: PDF (1145 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于非稳态多项式拟合理论,针对地震数据中同相轴振幅变化这一特征,我们提出了一种地震噪声衰减的新方法。非稳态多项式拟合系数是时变的,通过整形正则化约束多项式拟和系数的光滑性,自适应的估计地震数据的相干分量。基于动校正后的共中心点道集(CMP)中地震信号的相干性,利用非稳态多项式拟合估计有效信号,从而衰减随机噪声。对于线性相干噪声,如地滚波,首先利用径向道变换(Radial Trace Transform,RTT)将地震数据变换到时间—视速度域,在时间—视速度域利用非稳态多项式拟合估计出相干噪声,然后减去相干噪声。该方法可以有效的估计振幅变化的相干分量,不需要相干分量振幅为常量的假设。模拟和实际资料处理结果表明,与传统的稳态多项式拟合和低切滤波相比,该方法可以更为有效的衰减地震噪声,同时保真了地震有效信号。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国昌
陈小宏
李景叶
杜婧
宋家文
关键词多项式拟合   地震噪声衰减   径向道变换   非稳态回归     
Abstract: We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying coeffi cients can adaptively estimate the coherent components. The smoothness of the polynomial coefficients is controlled by shaping regularization. The signal is coherent along the offset axis in a common midpoint (CMP) gather after normal moveout (NMO). We use NPF to estimate the effective signal and thereby to attenuate the random noise. For radial events-like noise such as ground roll, we first employ a radial trace (RT) transform to transform the data to the time-velocity domain. Then the NPF is used to estimate coherent noise in the RT domain. Finally, the coherent noise is adaptively subtracted from the noisy dataset. The proposed method can effectively estimate coherent noise with amplitude variations along the event and there is no need to propose that noise amplitude is constant. Results of synthetic and fi eld data examples show that, compared with conventional methods such as stationary polynomial fi tting and low cut fi lters, the proposed method can effectively suppress seismic noise and preserve the signals.
Key wordsPolynomial fitting   noise attenuation   radial trace transform   nonstationary   regression   
收稿日期: 2010-08-31;
基金资助:

本研究得到了国家863课题(编号:2006AA09A102-09)和国家973课题(编号:2007CB209606)的联合资助。

引用本文:   
刘国昌,陈小宏,李景叶等. 基于非稳态多项式拟合的地震噪声衰减方法研究[J]. 应用地球物理, 2011, 8(1): 18-26.
LIU Guo-Chang,CHEN Xiao-Hong,LI Jing-Ye et al. Seismic noise attenuation using nonstationary polynomial fitting[J]. APPLIED GEOPHYSICS, 2011, 8(1): 18-26.
 
[1] Bekara, M., and Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74, V89 - V98.
[2] Brown, M., and Claerbout, J., 2000, A pseudo-unitary implementation of the radial trace transform: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2115 - 2118.
[3] Claerbout, J., 2009, Slant-stacks and radial traces: Stanford Expl. Project Report, SEP-5, 1 - 12.
[4] Fomel, S., 2001, Three-dimensional seismic data regularization: PhD dissertation, Stanford University.
[5] Fomel, S., 2006, Towards the seislet transform: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2847 - 2851.
[6] Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72, R29 - R36.
[7] Fomel, S., 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74, V25 - V33.
[8] Fomel, S., and Liu, Y., 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.
[9] Guitton, A., 2002, Coherent noise attenuation using inverse problems and prediction-error filters: First Break, 20, 161 - 167.
[10] Henley, D., 2003, Coherent noise attenuation in the radial trace domain: Geophysics, 68, 1408 - 1416.
[11] Karsli, H., Dondurur, D., and Çifçi, G., 2006, Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement: Geophysics, 71, V79 - V86.
[12] Liu, G., Fomel, S., Jin, L., and Chen, X., 2009a, Stacking seismic data using local correlation: Geophysics, 74, V43 - V48.
[13] Liu, G., Fomel, S., and Chen, X., 2009b, Time-frequency characterization of seismic data using local attributes: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1825 - 1829.
[14] 刘洋, S. Fomel, 刘财, 王典, 刘国昌, 2009c, 高阶Seislet变换及其在随机噪音衰减上的应用: 地球物理学报, 52, 2142 - 2151.
[15] 刘志鹏, 陈小宏, 李景叶, 2008, 径向道变换压制相干噪声方法研究: 地球物理学进展, 23(4), 1199 - 1204.
[16] Lu, W. K., Zhang, W., and Liu, D., 2006, Local linear coherent noise attenuation based on local polynomial approximation: Geophysics, 71, V163 - V169.
[17] Lu, Y., and Lu, W., 2009, Edge-preserving polynomial fitting method to suppress random seismic noise: Geophysics, 74, V69 - V73.
[18] Mayne, W. H., 1962, Common reflection point horizontal data stacking techniques: Geophysics, 27, 927 - 938.
[19] Neelamani, R., Baumstein, A. I., Gillard, D. G., Hadidi, M. T., and Soroka, W. I., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27, 240 - 248.
[20] Ristau, J. P., and Moon, W. M., 2001, Adaptive filtering of random noise in 2-D geophysical data: Geophysics, 66, 342 - 349.
[21] Tikhonov, A. N., 1963, Solution of incorrectly formulated problems and the regularization method: Soviet Mathematics-Doklady, 1035 - 1038.
[22] Xue, Y., and Chen, X., 2009, Random noise attenuation based on orthogonal polynomials transform: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3377 - 3380.
[23] Ursin, B., and Dahl, T., 1990, Least-square estimation of reflectivity polynomials: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1069 - 1071.
[24] Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: SEG.
[25] Zhang, R., and Ulrych, T. J., 2003, Physical wavelet frame denoising: Geophysics, 68, 225 - 231.
[1] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[2] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[3] 李芳, 王守东, 陈小宏, 刘国昌, 郑强. 径向道域变步长采样叠前非稳态反褶积处理方法研究[J]. 应用地球物理, 2013, 10(4): 423-432.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司