APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 169-178    DOI: 10.1007/s11770-015-0485-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种快速收敛的抗噪POCS地震数据重构方法
葛子建1,2,李景叶1,2,潘树林3,陈小宏1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京102249
2. 中国石油大学(北京)海洋石油勘探国家工程实验室,北京102249
3. 西南石油大学地球科学与技术学院,成都610500
A fast-convergence POCS seismic denoising and reconstruction method
Ge Zi-Jian1,2, Li Jing-Ye1,2, Pan Shu-Lin3, and Chen Xiao-Hong1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
 全文: PDF (1562 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震数据重构是地震数据处理的重要步骤之一,重构算法的精度、效率与抗噪性是地震数据重构技术的核心研究内容。研究针对傅里叶域凸集投影(POCS)算法,在定义的最优阈值评价标准基础上,提出了反比例阈值模型,该模型具有在大系数区间比指数模型更快下降速率、而在小系数区间比指数模型更慢下降速率,从而在保证弱反射信号重构精度的同时有效提高POCS地震数据重构算法计算效率。为提高反比例阈值对不同地震数据特点的适应性,在地震数据谱能量分布差异性特征分析基础上,研究提出了在反比例阈值模型分母上增加适应地震数据谱能量特征的因变参数,通过调节该因变参数获得适应不同地震数据特点的最佳阈值曲线,进一步提高算法的计算精度与计算效率。为了实现重构过程中随机噪音的自适应衰减,提高重构后地震数据信噪比,研究提出了数据驱动的加权回加系数计算策略,利用每次迭代对应数据驱动阈值占阈值区间的百分比获得加权回加系数。研究将新方法应用于模拟三维数据和实际三维地震数据,分析结果表明反比例阈值相对传统阈值在提高数据重构计算效率和精度方面具有明显的优越性,新提出的加权回加系数计算策略能有效提高重构数据的信噪比。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛子建
李景叶
潘树林
陈小宏
关键词凸集投影   傅里叶变换   阈值模型   重构   去噪     
Abstract: The efficiency, precision, and denoising capabilities of reconstruction algorithms are critical to seismic data processing. Based on the Fourier-domain projection onto convex sets (POCS) algorithm, we propose an inversely proportional threshold model that defines the optimum threshold, in which the descent rate is larger than in the exponential threshold in the large-coefficient section and slower than in the exponential threshold in the small-coefficient section. Thus, the computation efficiency of the POCS seismic reconstruction greatly improves without affecting the reconstructed precision of weak reflections. To improve the flexibility of the inversely proportional threshold, we obtain the optimal threshold by using an adjustable dependent variable in the denominator of the inversely proportional threshold model. For random noise attenuation by completing the missing traces in seismic data reconstruction, we present a weighted reinsertion strategy based on the data-driven model that can be obtained by using the percentage of the data-driven threshold in each iteration in the threshold section. We apply the proposed POCS reconstruction method to 3D synthetic and field data. The results suggest that the inversely proportional threshold model improves the computational efficiency and precision compared with the traditional threshold models; furthermore, the proposed reinserting weight strategy increases the SNR of the reconstructed data.
Key wordsPOCS   Fourier transform   threshold model   reconstruction   denoising   
收稿日期: 2015-02-07;
基金资助:

本研究由国家自然科学基金项目(编号:NO.U1262207和41204101)和国家科技重大专项课题(编号:2011ZX05019-006)联合资助。

引用本文:   
葛子建,李景叶,潘树林等. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
Ge Zi-Jian,Li Jing-Ye,Pan Shu-Lin et al. A fast-convergence POCS seismic denoising and reconstruction method[J]. APPLIED GEOPHYSICS, 2015, 12(2): 169-178.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(6), E91-E97.
[2] Duijndam, A. W., Schonewille, M. A., and Hindriks, K., 1999, Reconstruction of band-limited signals irregularly sampled along one spatial direction: Geophysics, 64(2), 524-538.
[3] Galloway, E., and Sacchi, M. D., 2007, POCS method for seismic data reconstruction of irregularly sampled data: CSPG-CSEG-CWLS Joint Convention, 555.
[4] Gao, J. J., Chen, X. H., Li, J. Y., et al, 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229-238.
[5] Gao, J. J., Stanton, A., Naghizadeh, M., Sacchi, M. D., et al, 2013, Convergence improvement and noise attenuation consideration for beyond alias projection onto convex sets reconstruction: Geophysical Prospecting, 61(suppl. 1), 138-151.
[6] Gerchberg, R. W., and Saxton, W. O., 1972, A practical algorithm for the determination of phase from image and diffraction plane pictures: Optik, 35(2), 227-246.
[7] Hennenfent, G., and Herrmann, F., 2006, Seismic denoising with nonuniformly sampled curvelets: Computing in Science and Engineering, 8(3), 16-25.
[8] Kabir, M. M. N., and Verschuur, D. J., 1995, Restoration of missing offsets by parabolic Radon transform: Geophysical Prospecting, 43(3), 347-368.
[9] Kong, L. Y., Yu, S. W., Chen, L., et al., 2012, Application of compressive sensing to seismic data reconstruction: Acta Seismologica Sinica, 34(5), 659-666.
[10] Kreimer, N., and Sacchi, M. D., 2011, Evaluation of a new 5D seismic volume reconstruction method: Tensor completion versus Fourier reconstruction: Tensor Completion vs. Fourer, Reconstruction: CSPG-CSEG-CWLS Joint Convention, 1-5.
[11] Li, H. F., and Du, M. H., 2003, Super-resolution Image Restoration Based on Improved POCS Algorithm: Journal of South China University of Technology (in Chinese), 31(10), 24-27.
[12] Liu, G. C., Chen, X. H., Guo, Z. F., et al., 2011, Missing seismic data rebuilding by interpolation based on curvelet transform: Oil Geophysical Prospecting (in Chinese), 46(2), 237-246.
[13] Malcolm, A. E., Hoop, M. V. D., and Rousseau, J. H. L., 2005, The applicability of dip moveout/azimuth moveout in the presence of caustics: Geophysics, 70(1), S1-S17.
[14] Menke, W., 1991, Applications of the POCS inversion method to interpolating topography and other geophysical fields: Geophysical Research Letters, 18(3), 435-438.
[15] Naghizadeh, M., and Sacchi, M. D., 2010, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75(6), WB189-WB202.
[16] Naghizadeh, M., and Sacchi, M. D., 2009, f-x adaptive seismic-trace interpolation: Geophysics, 74(1), V 9-V16.
[17] Oropeza, V., and Sacchi, M., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76(3), V25-V32.
[18] Papoulis, A., 1975, A new algorithm in spectral analysis and band limited extrapolation: IEEE Transactions on Circuits and Systems, CAS-22(9), 735-742.
[19] Ronen, J., 1987, Wave-equation trace interpolation: Geophysics, 52(7), 973-984.
[20] Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56(6), 785-794.
[21] Trad, D. O., 2009, Five-dimensional interpolation: Recovering from acquisition constraints: Geophysics, 74(6), V123-V132.
[22] Trad, D. O., Ulrych, T. J., and Sacchi, M. D., 2002, Accurate interpolation with high-resolution time-variant Radon transform: Geophysics, 67(2), 644-656.
[23] Trickett, S., Burroughs, L., Milton, A., et al, 2010, Rank-reduction-based trace interpolation: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1989-1992.
[24] Wang, S., Gao, X., and Yao, Z., 2010, Accelerating POCS interpolation of 3D irregular seismic data with graphics processing units: Computers and Geosciences, 36(10), 1292-1300.
[25] Wang, S. Q., and Zhang, J. H., 2014, Fast imaging in painting using exponential-threshold POCS plus conjugate gradient: The Imaging Science Journal, 62(3), 161-170.
[26] Zhang, H., and Chen, X. H., 2013, seismic data reconstruction based on jittered sampling and curvelet transform. Chinese Journal of Geophysics (in Chinese), 56(6), 1637-1649.
[1] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[2] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[3] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
[4] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[5] 邓世武,贾雨,姚兴苗,刘致宁. 多类型断层条件下的复杂地层曲面的重构方法[J]. 应用地球物理, 2017, 14(2): 195-204.
[6] 张华,陈小宏,张落毅. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
[7] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[8] 张盼, 韩立国, 周岩, 许卓, 葛奇鑫. 基于被动源多窗谱方法的主动源地震低频数据重[J]. 应用地球物理, 2015, 12(4): 585-597.
[9] 杨亚鹏, 吴美平, 唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
[10] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
[11] 陈国新, 陈生昌, 王汉闯, 张博. 基于L0范数最小化的地球物理数据稀疏重构[J]. 应用地球物理, 2013, 10(2): 181-190.
[12] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
[13] 高伟, 刘怀山. 基于多用户峰度准则的强噪声衰减方法[J]. 应用地球物理, 2013, 10(1): 25-32.
[14] 蒋甫玉, 黄岩, 燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
[15] 唐刚, 马坚伟, 杨慧珠. 基于学习型超完备字典的地震数据去噪[J]. 应用地球物理, 2012, 9(1): 27-32.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司