Abstract:
Wavefield separation of multicomponent seismic data to image subsurface structures can be realized in either the space domain or the wavenumber domain. However, as the particle velocity components used in the wavenumber-domain wavefield separation are not defined at the same grid point with the staggered-grid finite-difference method for elastic wavefield simulation, we propose the wavenumber-domain interpolation method to estimate the required values at the common grid points prior to the wavenumber-domain true-amplitude wavefield separation. Moreover, numerical experiments show that the wavenumber-domain interpolation method has high interpolation accuracy and the true-amplitude wavefield separation method shows good amplitude preservation. The application of the proposed methodology to elastic reverse-time migration can obtain good amplitude-preserved images even in the case of some velocity error.
DU Qi-Zhen,ZHANG Ming-Qiang,CHEN Xiao-Ran et al. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
[1]
Aki, K., and Richards, P. G., 2002, Quantitative Seismology (2nd ed). California: University Science Books.
[2]
Chattopadhyay, S., and McMechan, G. A., 2008, Imaging conditions for prestack reverse-time migration: Geophysics, 73(3), S81-S89.
Dellinger, J., and Etgen, J., 1990, Wavefield separation in two-dimensional anisotropic media: Geophysics, 55(7), 914-919.
[5]
Devaney, A. J., Oristagliot, M. L., 1986, A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves in vector seismic data: Geophysics, 51(2), 419-423.
[6]
Dong, L. G., Ma Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese J. Geophys (in Chinese), 43(3), 411-419.
[7]
Du, Q., Gong, X., Zhang, M., Zhu, Y. T., and Fang, G., 2014, 3D PS-wave imaging with elastic reverse-time migration: Geophysics, 79(5), S173-S184.
[8]
Du, Q. Z., Zhu, Y. T., and Ba, J., 2012, Polarity reversal correction for elastic reverse time migration: Geophysics, 77(2), S31-S41.
[9]
Etgen, J. T., 1988, Prestacked migration of P- and SV-waves: 58th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 972-975.
[10]
Feng, X., Zhang, X. W., Liu, C., Wang, D., and Yang, Q. J., 2011, Separating P-P and P-SV wave by parabolic Radon transform with multiple coherence: Chinese J. Geophys (in Chinese), 54(2), 304-309.
[11]
Li, Z. Y., Liang, G. H., and Gu, B. L., 2013, Improved method of separating P- and S-waves using divergence and curl: Chinese J. Geophys (in Chinese), 56(6), 2012-2022.
[12]
Liu, Y., 2014, Optimal staggered-grid finite-difference schemes based on least squares for wave equation modeling: Geophysical Journal International,197(2), 1033-1047.
[13]
Madariaga, R., 1976, Dynamics of an expanding circular fault: Bull. Seismol. Soc. Am., 66(3), 639-666.
[14]
Martin, G. S., Wiley, R., and Marfurt, K. J., 2006, Marmousi2: An elastic upgrade for Marmousi: The Leading Edge, 25, 156-166.
[15]
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. J., and Halada, L., 2002, 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume and arithmetic averaging of elastic moduli and densities: Bull. Seismol. Soc. Am., 92(8), 3042-3066.
[16]
Oristaglio, M. L., Devany, A. J., and Track, A., 1985, Separation of P-waves and S-waves in borehole seismic data: 55th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 52-55.
[17]
Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging conditions for wave-equation shot-profile migration: Geophysics, 73(6), S219-S227.
[18]
Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensional elastic seismogram: 61th EAGE Conference & Exhibition, Extended Abstracts, 6-23.
[19]
Sun, R., Chow, J. D., and Chen, K. J., 2001, Phase correction in separating P- and S-waves in elastic data: Geophysics, 66(5), 1515-1518.
[20]
Sun, R., McMechan, G. A., and Chuang, H. H., 2011, Amplitude balancing in separating P- and S-waves in 2D and 3D elastic data: Geophysics, 76(3), S103-S113.
[21]
Sun, R., McMechan, G. A., Hsiao, H. S., and Chow, J., 2004, Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286-297.
Yan, J., and Sava, P., 2009a, Elastic wave-mode separation for VTI media: Geophysics, 74(5), WB19-WB32.
[25]
Yan, J., and Sava, P., 2009b , Elastic wave mode separation for TTI media: 79th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1197-1021.
[26]
Yan, J., and Sava, P., 2009c, 3D elastic wave mode separation for TTI media: 79th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 4294-4298.
[27]
Yao, D. Z., Zhou, X. X., and Zhong, B. S., 1993, Method for separating out P-wave or S-wave in VSP data and its application: OGP (in Chinese), 28(5), 623-628.
[28]
Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[29]
Zhang, G. Q., and Zhou, H. B., 1995, Separating compressional wave from shear wave in surface seismic records: OGP (in Chinese), 30(2), 181-191.
[30]
Zhang, M., Du, Q. Z., Fang, G., Gong, X. F., and Zhu, Y. T., 2013, Phase correction of elastic reverse time migration section: 83rd Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1713-1717.
[31]
Zhang, Q. S., and McMechan, G. A., 2010, 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media: Geophysics, 75(3), D13-D26.
[32]
Zhang, Y., and Sun, J., 2009, Practical issues of reverse time migration: True-amplitude gathers, noise removal and harmonic-source encoding: First Break, 27(1), 53-60.