APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 331-339    DOI: 10.1007/s11770-014-0442-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于垂向一阶导数与解析信号比值的欧拉反演方法
郭灿灿1,熊盛青2,薛典军2,王林飞2
1. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
2. 中国国土资源航空物探遥感中心,北京 100083
Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal
Guo Can-Can1, Xiong Sheng-Qing2, Xue Dian-Jun2, and Wang Lin-Fei2
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China.
 全文: PDF (899 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规欧拉反褶积法中构造指数的选取以及分散解存在较多的问题,提出了基于联立垂向一阶导数与解析信号的欧拉齐次方程的RDAS-Euler反演方法。该方法可以更为精确的估计场源的范围及埋深,且不需考虑构造指数N的影响,避免了因构造指数不当而引起的反演误差。通过对单一地质体及组合地质体模型的实验证明:本文方法能有效地完成目标体的反演工作,反演结果与理论值之间的误差小于10%,且相对于常规欧拉反褶积法更加稳定准确,能够更好的得到地质体边界及深度信息。将RDAS-Euler法应用于黑龙江省虎林盆地实测布格重力异常数据,获得了丰富的断裂信息,说明RDAS-Euler法增强了对断裂平面位置的识别能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭灿灿
熊盛青
薛典军
王林飞
关键词欧拉反褶积   解析信号   边界识别   构造指数     
Abstract: We propose a new automatic method for the interpretation of potential field data, called the RDAS–Euler method, which is based on Euler’s deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies (structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfit between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.
Key wordsEuler deconvolution   analytic signal   edge identification   structural index   
收稿日期: 2014-03-04;
基金资助:

本研究由国家高技术研究发展计划(编号:2006AA06A208)资助。

引用本文:   
郭灿灿,熊盛青,薛典军等. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
GUO Can-Can,XIONG Sheng-Qing,XUE Dian-Jun et al. Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal[J]. APPLIED GEOPHYSICS, 2014, 11(3): 331-339.
 
[1] Blakely, R. J.,1995, Potential theory in gravity and magnetic applications: Cambridge University Press.
[2] Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location: Geophysics, 75(6), I59-I74.
[3] Bournas, N., and Baker, H. A., 2001, Interpretation of magnetic anomalies using the horizontal gradient analytic signal: Annali DiGeofisica, 44(3), 505-526.
[4] Bastani, M., and Pedersen, L. B., 2001, Automatic interpretation of magnetic dikes parameters using the analytics signal technique: Geophysics, 66, 551-561.
[5] Keating, P., and Sailhac, P., 2004, Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes: Geophysics, 69(1), 180-190.
[6] Ma, G. Q., Du, X. J., Li, L. L., and Meng, L. S., 2012, Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal: Applied Geophysics, 9(4), 468-474.
[7] Mushayandebvu, M. F., Van, D. P., and Reid, A. B., 2001, Magnetic source parameters of two-dimensional structures using extended Euler deconvolution: Geophysics, 66(3),814-823.
[8] Nabighian, M. N., and Hansen, R. O., 2001,Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform: Geophysics, 66(6),1805-1810.
[9] Nabighian, M. N., 1984, Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms-Fundamental relations: Geophysics,49, 780-786.
[10] Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
[11] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section:Its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507-517.
[12] Pierre, B. K., 1998, Weighted Euler deconvolution of gravity data: Geophysics, 63(5), 1959-1603.
[13] Reid, A. B., Allsop, J. M., and Granser, H., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1),80-91.
[14] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57,116-125.
[15] Salem, A., and Ravat, D, A., 2003, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data: Geophysics, 68, 1952-1961.
[16] Salem, A., Williams, S., and Fairheard, D., 2008, Interpretation of magnetic data using tilt-angle derivatives: Geophysics, 71(1), 1-10.
[17] Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI(TM) method: Geophysics, 62, 807-813.
[18] Thompson, D. T., 1982, EULDPH—a new technique for making computer assisted depth estimates from magnetic data: Geophysics, 47(1), 31-37.
[19] Wang, Y. G., Wang, Z. W., Zhang, F. X., Zhang, J., Tai, Z. H., and Guo, C. C., 2012, Edge detection of potential field based on normalized vertical gradient of mean square error ratio: Journal of China University of Petroleum, 36(2), 86-90.
[20] Zhang, F. X., Zhang, X. Z., Zhang, F. Q., Sun, J. P., Qiu, D. M., and Xue, J., 2010, Study on geology and geophysics on structural units of Hulin Basin in Heilongjiang province: Journal of Jilin University (Earth Science Edition), 40(5), 1170-1176.
[1] 马国庆,明彦伯,韩江涛,李丽丽,孟庆发. 磁源体参数反演的快速局部波数法[J]. 应用地球物理, 2018, 15(2): 353-360.
[2] 李丽丽, 韩立国, 黄大年. 空间归一化边界识别方法用于判断地质体的水平位置及深度[J]. 应用地球物理, 2014, 11(2): 149-157.
[3] 马国庆, 杜晓娟, 李丽丽, 孟令顺. 利用解析信号的水平与垂直导数进行磁异常的解释[J]. 应用地球物理, 2012, 9(4): 468-474.
[4] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[5] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司