APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 340-349    DOI: 10.1007/s11770-014-0448-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
一种求解地球物理参数各向异性的新方法——单位步长变异增量法
曹云梦, 李志伟, 韦建超, 占文俊, 朱建军, 汪长城
中南大学,地球科学与信息物理学院,长沙 410083
A novel method for determining the anisotropy of geophysical parameters: unit range variation increment (URVI)
Cao Yun-Meng1, Li Zhi-Wei1, Wei Jian-Chao1, Zhan Wen-Jun1, Zhu Jian-Jun1, and Wang Chang-Cheng1
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
 全文: PDF (688 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 目前在研究地球物理参数的空间变异特性时常常是基于几何各向异性假设,然而实际中几何各向异性假设常常不成立。本文提出了一种求解地球物理参数各向异性的新方法,首先对各方向上的变异值作归一化处理,然后用拟合的方法得到各方向单位步长上的变异性强度,进而实现对全局各向异性的求解。以上海地区合成孔径雷达干涉测量(InSAR)中差分大气延迟样本数据为例,验证了新方法求解各向异性的优越性:与标准值相比,新方法所估计出的全局变异值的偏差只有6.4%,而基于几何各向异性假设方法的偏差达到了21.2%,而且新方法的运算效率有非常显著的提高。进一步,通过克里金插值交叉验证实验,证明了基于新算法所得结构函数的克里金插值效果最好,这也从另外一个角度验证了新算法求解的各向异性结构函数更准确,更好地表征了区域化变量的空间结构特征。因此,与传统的椭圆几何各向异性方法相比,新方法不仅能更准确的描述地球物理参数的各向异性特性,而且有更高的运算效率,为更准确地估计出所需的地球物理参数奠定了基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹云梦
李志伟
韦建超
占文俊
朱建军
汪长城
关键词各向异性   变异函数   合成孔径雷达干涉测量   大气延迟   克里金插值     
Abstract: Geometric anisotropy is commonly assumed in the investigation of the spatial variations of geophysical parameters. However, this assumption is not always satisfied in practice. We propose a novel method to determine the anisotropy of geophysical parameters. In the proposed method, the variograms are first normalized in all directions. Then, the normalized samples are fitted by the unit range variation increment (URVI) function to estimate the intensities of the variograms in each direction, from which the anisotropy can be finally determined. The performance of the proposed method is validated using InSAR atmospheric delay measurements over the Shanghai region. The results show that the deviation of the method is 6.4%, and that of the geometric anisotropy-based method is 21.2%. In addition, the computational efficiency of the new method is much higher. Subsequently, the URVI- and the geometric anisotropy-based methods are cross-validated in the cross-validation experiments by using Kriging interpolation. The results demonstrate that the structure functions generated with the proposed method are more accurate and can better reflect the spatial characteristics of the random field. Therefore, the proposed method, which is more accurate and efficient to determine the anisotropy than the conventional geometry anisotropy-based method, provides a better foundation to estimate the geophysical parameters of interest.
Key wordsAnisotropy   semivariogram   InSAR   atmospheric delay   kriging interpolation   
收稿日期: 2013-10-15;
基金资助:

本研究由国家高技术研究发展计划(863)(编号:2012AA121301)、国家重点基础研究发展计划(编号:2012CB719903)、国家自然科学基金项目(编号:41222027、41474007和41404013)、湖南省自然科学基金项目(编号:13JJ1006)联合赞助支持。

引用本文:   
曹云梦,李志伟,韦建超等. 一种求解地球物理参数各向异性的新方法——单位步长变异增量法[J]. 应用地球物理, 2014, 11(3): 340-349.
CAO Yun-Meng,LI Zhi-Wei,WEI Jian-Chao et al. A novel method for determining the anisotropy of geophysical parameters: unit range variation increment (URVI)[J]. APPLIED GEOPHYSICS, 2014, 11(3): 340-349.
 
[1] Chorti, A., Hristopulos, D. T., 2008, Nonparametric identification of anisotropic (Elliptic) correlations in spatially distributed data sets: IEEE Translations on Signal Processing, 56, 4738-4751.
[2] Chilès, J. P., and Delfiner, P., 1999, Geostatistics: Modeling Spatial Uncertainty: A Wiley-Interscience Publication.
[3] Delfiner, P., 1999, Geostatistics: modeling spatial uncertainty: A Wiley-Interscience Publication.
[4] Ecker, M. D., and Gelfand, A. E., 1999, Bayesian modeling and inference for geometrically anisotropic spatial data: Math Geology, 32(1),67-82.
[5] Elogne, S. N., Hristopulos, D. T., Varouchakis, E., 2008, An application of spartan spatial random fields in environmental mapping: Focus on automatic mapping capabilities: Stochastic Environmental Research Risk Assessment, 22(5), 633-646.
[6] Gao, Y. and Teng, J. W., 2005, Studies on seismic anisotropy in the crust and mantle on Chinese mainland: Progress in Geophysics, 20(1),180-185.
[7] Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation: Oxford University Press, London.
[8] Hou, J. R., and Huang, J. X., 1982, Geostatistics and the application in mineral reserves: Geological Publishing House, Beijing.
[9] Igúzquiza, E. P., 1998, Maximum likelihood estimation of spatial covariance Parameters: Math Geology, 30(1),95-108.
[10] Jin, Y., Zheng, D. S., Pan, M., et al, 2011, 3D Geological Modeling of Anisotropic Mineralization and Its Application in Reserves Estimation: Acta Geological Sinica, 85(9), 1519-1527.
[11] Journel, A. G., and Huijbregts, C. J., 1987, Mining Geostatistics: Academic Press, London
[12] Jupp, D. L. B., Strahler, A. H., and Woodcock, C. E., 1998, Autocorrelation and regularization in digital images. I. Basic theory: Geoscience and Remote Sensing, 26(4), 463-473.
[13] Kazuo, O., 2013, Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics: Remote Sensing, 5(2), 716-807.
[14] Kitanidis, P. K., 1983, Statistical estimation of polynomial generalized covariance functions and hydrologic applications: Water Resources Res, 19(2), 909-921.
[15] Kitanidis, P. K., 1987, Parametric estimation of covariances of regionalized Variables: Water Resources Res, 23(4), 671-680.
[16] Li, D. H., 2012, Anisotropic Wave field simulation and characteristic analysis of coal reservoirs: Ph. D. thesis, China University of Mining and Technology, Xuzhou.
[17] Li, Z. W., 2005, Modeling atmospheric effects on repeat-pass InSAR measurements, Ph.D. thesis, The Hong Kong Polytechnic University, Hong Kong.
[18] Li, Z. W., Xu, W. B., Feng, G. C., et al, 2012, Correcting atmospheric effects on InSAR with MERIS water vapor data and elevation-dependent interpolation model: Geophysical Journal International, 189, 898-910.
[19] Li, Z. W., Ding, X. L., Huang, C., et al, 2007, Atmospheric effects on repeat-pass InSAR measurements over Shanghai region: Journal of Atmospheric and Solar-Terrestrial Physics, 69(12), 1344-1356.
[20] Liao, M. S., and Lin, H., 2003, Synthetic aperture radar interferometry: principle and signal processing (in Chinese): Publishing House of Surveying and Mapping, Beijing.
[21] Mateus, P., Nico, G., Tome, R., et al, 2013, Experimental Study on the Atmospheric Delay Based on GPS, SAR Interferometry, and Numerical Weather Model Data: IEEE Transactions on Geoscience and Remote Sensing, 51(1), 6-11.
[22] Ouchi, K., 2013, Recent Trend and Advance of Synthetic aperture radar with selected topics: Remote Sensing, 5(2), 716-807.
[23] Ramon, F. H., 2002, Radar interferometry data interpretation and error analysis: Kluwer Academic Publishers, Dordrecht.
[24] Rose, P. A., Hensley, S., Joughin, I. R., et al., 2000, Synthetic aperture radar interferometry: Proceedings of the IEEE, 88(3), 333-382.
[25] Swerling, P.,1962, Statistical properties of the contours of random surfaces: IRE Transactions on Information Theory, 8(4), 315-321.
[26] Wackernagel, H., 1997, Multivariate geostatistics. Springer-Verlag, Berlin, Germany.
[27] Wu, J., Gao, Y., Chen, Y. T., et al, 2007, Seismic anisotropy in the crust in northwestern capital area of China: Chinese Journal of Geophysics, 50(1), 209-220.
[28] Zhang, H. Q., 1990, Principles and application of geostatistics: China University of Mining and Technology Press, Xuzhou.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[8] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[9] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[10] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[11] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[12] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[13] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[14] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[15] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司