Positioning of grid points in wave front construction
Han Fuxing1,2, Sun Jianguo1,2, Sun Zhangqing1,2 , and Yang Hao3
1. College for Geoexploration Science Technology, Jilin University, Changchun, 130026.
2. Laboratory for Integrated Geophysical Interpretation Theory of Ministry for Land and Resources, Changchun, 130026.
3. Research Institute of Petroleum Exploration and Development, China, Beijing, 100083.
Abstract:
In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning methods (vector cross product judgment, angle sum, intersection-point, and signs comparison algorithms) in wave front construction which are commonly used in computer graphics are compared and analyzed in this paper. Based on the stability analysis of the location method, the calculation examples show that the vector cross product judgment method is faster and more accurate than other methods in the realization of the relative positioning between non-regular quadrilateral grids and regular rectangle grid nodes in wave front construction. It provides precise grid point attribute values for the next steps of migration and demigration.
HAN Fu-Xing,SUN Jian-Guo,SUN Zhang-Qing- et al. Positioning of grid points in wave front construction[J]. APPLIED GEOPHYSICS, 2009, 6(3): 248-258.
[1]
ervený, V., 1985, The application of ray tracing to the numerical modeling of seismic wavefields in complex structures, seismic shear waves, Part A, Theory: Geophysical Press, London.
[2]
?ervený V., 1987, Ray tracing algorithms in three-dimensional laterally varying layered structures, Seismic Tomography (ed. G. Nolet), Riedel Publishing Company, 99 - 133.
[3]
Chen, J. Y., Zhang, Z. J., and Liu, E. R., 2006, Anisotropic inversion of traveltimes and polarization of wide-angle seismic data using simulated annealing: Journal of Seismic Exploration, 15, 101 - 118.
[4]
Coman, R., and Gajewski, D., 2001, 3D traveltime and migration weight computation using wavefront oriented ray tracing: 63th Mtg., Eur. Assn. Geosci. Eng., Extended Abstracts, P008.
[5]
Coman, R., and Gajewski, D., 2002, Wavefront-oriented ray tracing with optimal ray density:EAGE 64th Conference & Technical Exhibition - Florence, Italy, 27 - 30.
[6]
Ettrich, N., and Gajewski, D., 1996, Wavefront construction in smooth media for pre-stack depth migration: Pure and Applied Geophysics, 148, 481 - 502.
[7]
Han, F. X., Sun, J. G., and Yang, H., 2007, Ray tracing by implementing c++ language-based wavefront construction approach: Oil Geophysical Prospecting, 42(4), 474 - 481.
[8]
Han, F. X., Sun, J. G., and Yang, H., 2008, Interpolation algorithms in wavefront construction: Chinese Journal of Computational Physics, 25(2), 197 - 202.
[9]
Jin, T. Z., 1988, Computer graphics, Hangzhou: Zhejiang University Press, Hangzhou, China.
[10]
Li, L. K., Yu, C. H., and Zhu, Z. H., 1991, Numerical solution of differential equations: Fudan University Press, Shanghai.
[11]
Qin, Y. L., Zhang, Z. J., and Shin, C. S., 2005, A robust and accurate traveltime calculation using a frequency-domain two-way wave-equation modeling algorithm: Journal of Seismic Exploration, 13(3), 227 - 245.
[12]
Rreiss, B. R. (Translated by Hu, G. B., Wang, S., and Hui, M.), 2003, Date structures and algorithms with object-oriented design patterns in C++: Publishing House of Electronics Industry, Beijing.
[13]
Vidale, J. E., 1988, Finite-difference calculation of traveltimes: Bull.,Seis Soc Am, (in Chinese), 78, 2062 - 2076.
[14]
Vinje, V., Iversen E., and Gjoystdal, H., 1993, Traveltime and amplitude estimation using wavefront construction: Geophysics, 58(8) 1157 - 1166.
[15]
Xu, T., Xu, G. M., Gao, E. G., Zhou, L. B., and Jiang, X.. Y., 2004, Block modeling and shooting ray tracing in complex 3-D media: Chinese J. Geophys. (in Chinese), 47(6), 1118 - 1126.
[16]
Xu, T., Xu, G. M., Gao, E. G., Li, Y. C., Jiang X. Y., and Luo K. Y., 2006, Block modeling and segmentally iterative ray tracing in complex 3D media: Geophysics, 71(3), T41 - T51.
[17]
Xu, T., Zhang, Z. J., Zhao, A. H., Zhang, A., Zhang, X., and Zhang, H., 2008, Sub-triangle shooting ray-tracing in complex 3D VTI media: Journal of Seismic Exploration (in Chinese), 17(2-3), 133 - 146.
[18]
Zhang, Z. J., 2002, The anisotropy processing and interpretation methods of the multi-component seismic data: Heilongjiang Education Press, Harbin, China.
[19]
Zhang, J. H., and Zhang, J. D., 2003, Computer graphics: China Machine Press, Beijing.
[20]
Zhang, P., Liu, H., and Li, Y. M., 2000, The situation and progress of ray tracing method research: Progress in Geophysics, 15(1), 36 - 45.
[21]
Zhang, Z., Lin, G., Chen, J., Harris, J. M., and Han, L., 2003, Inversion for elliptically anisotropic velocity using VSP reflection traveltimes: Geophysical Prospecting, 51(2), 159 - 166.
[22]
Zhang, J. Z., Chen, S. J., and Xu, C. W., 2004, A method of shortest path ray tracing with dynamic networks: Chinese J. Geophys. (in Chinese), ,47(5), 899 - 904.
[23]
Zhang, M. G., Cheng, B. J., Li, X. F., and Wang, M. Y., 2006, A fast algorithm of shortest path ray tracing: Chinese J. Geophys. (in Chinese), 49(5), 1467 - 1474.
[24]
Zhao, A. H., Zhang, Z. J., and Teng, J. W., 2004, Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency: Journal of Geophysics and Engineering, 1(4), 245 - 251.
[25]
Zhao, A. H., and Zhang, Z. J., 2004, Fast calculation of converted wave traveltime in 3-D complex media: Chinese J. Geophys. (in Chinese), 47(4), 702 - 707.