APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (3): 234-240    DOI: 10.1007/s11770-009-0033-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于峰值频率的薄层厚度计算公式及其近似
孙鲁平,郑晓东,李劲松,首皓
中国石油勘探开发研究院,北京 100083
Thin-bed thickness calculation formula and its approximation using peak frequency
Sun Lu-Ping1, Zheng Xiao-Dong1, Li Jing-Song1, and Shou Hao1
1. Research Institute of Petroleum Exploration and Development, Beijing 100083.
 全文: PDF (655 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 调谐厚度范围内薄层厚度定量预测一直是地震勘探面临的挑战之一,目前多数讨论仅限于顶底反射系数等幅反极性的薄层,对于其他薄层类型尚无系统研究。本文将所有薄层划分为四类:等幅反极性薄层、不等幅反极性薄层、等幅同极性薄层、不等幅同极性型薄层;通过理论推导得到薄层地震峰值频率与厚度关系的一般表达式,针对该式为一个复杂非线性隐式、难于直接应用求取薄层厚度的难题,采用三角函数的泰勒展开式进行简化,给出每类薄层厚度定量估算的近似公式,并系统讨论了各阶近似公式的精度。与传统的利用振幅信息求取薄层厚度的方法相比,本文方法的精度更高,且不受顶底反射系数绝对大小的影响,便于实际应用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙鲁平
郑晓东
李劲松
首皓
关键词薄层   定量计算   峰值频率   楔状模型   泰勒展开近似     
Abstract: Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn’t influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.
Key words:   
收稿日期: 2009-03-19;
基金资助:

本研究由国家海相碳酸盐岩国家重大专项(编号:2008zx05000-004)和中国石油集团公司重大专项(编号:2008e-0610-10)资助。

引用本文:   
孙鲁平,郑晓东,李劲松等. 基于峰值频率的薄层厚度计算公式及其近似[J]. 应用地球物理, 2009, 6(3): 234-240.
SUN Lu-Ping,ZHENG Xiao-Dong,LI Jin-Song et al. Thin-bed thickness calculation formula and its approximation using peak frequency[J]. APPLIED GEOPHYSICS, 2009, 6(3): 234-240.
 
[1] Bai, G. J., Wu, H. N., Zhao, X. G., and Wang, J. H., 2006, Research on prediction of thin bed thickness using seismic data and its application: Progress in Geophysics, 21(2), 554 - 558.
[2] Chung, H. M., and Lawton, D. C., 1995, Amplitude responses of thin beds: Sinusoidal approximation versus Ricker approximation: Geophysics, 60, 223 - 230.
[3] Gridley, J. A., and Partyka, G. A., 1997, Processing and interpretational aspects of spectral decomposition: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1055 - 1058.
[4] Huang, Z. P., Wang, X. H., and Wang, Y. Z., 1997, Parameter analysis of seismic attributes and thickness prediction for thin bed: Geophysical Prospecting for Petroleum, 36(3), 28 - 38.
[5] Okaya, D., 1995, Spectral properties of the earth’s contribution to seismic resolution: Geophysics, 60, 241 - 251.
[6] Partyka, G. A., Gridley, J. A., and Lopez, J. A., 1999, Interpretational aspects of spectral decomposition in reservoir characterization: The Leading Edge, 18, 353 - 360.
[7] Partyka, G. A., 2005, Spectral decomposition: SEG Distinguished Lecture:
[8] Ricker, N., 1953, Wavelet contraction, wavelet expansion, and the control of seismic resolution: Geophysics, 18, 769 - 792.
[9] Widess, M., 1973, How thin is a thin bed?: Geophysics, 38, 1176 - 1180.
[1] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[2] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[3] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司