APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (3): 226-233    DOI: 10.1007/s11770-009-0026-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
位场数据归一化总水平导数垂向导数边缘识别方法
王万银,潘玉,邱之云
长安大学地质工程与测绘学院,长安大学西部矿产资源与地质工程教育部重点实验室,西安 710054
A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data
Wang Wan-Yin1, Pan Yu2, and Qiu Zhi-Yun1

1. College of Geology Engineering and Geomatics, Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University, Xi’an 710054, China.
2. Petroleum Exploration and Development Research Institute, PetroChina Changqing Oilfield Company, Xi’an 710021, China.

 全文: PDF (910 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 位场数据边缘识别技术常常用来识别地质体的边缘位置。本文提出了一种新的位场数据边缘识别方法——归一化总水平导数垂向导数,它具有边缘探测和边缘增强两种功能。该方法首先计算位场数据的总水平导数THDR和总水平导数THDR的n阶垂向导数VDRn,并对n阶垂向导数VDRn采用取大于0的阈值技术就得到总水平导数峰值PTHDR,该值可以用来进行边缘探测;其次,计算总水平导数峰值PTHDR与总水平导数THDR的比,并用最大值进行归一化得到归一化总水平导数垂向导数,该值可以用来进行边缘增强;最后,通过理论模型和实际资料检验了方法的有效性和可靠性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王万银
潘玉
邱之云
关键词位场数据   边缘识别   总水平导数   垂向导数   归一化     
Abstract: Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
Key wordspotential field data   edge recognition   edge enhancement   total horizontal derivative   normalized vertical derivative   
收稿日期: 2009-06-23;
基金资助:

本研究由国家科技重大专项《大型油气田及煤层气开发》之“海洋深水区油气勘探关键技术”项目(2008ZX05025)和国土资源部全国油气资源战略选区调查与评价项目“南海北部深水区天然气资源战略调查及评价项目”(XQ-2007-05)联合资助。

引用本文:   
王万银,潘玉,邱之云. 位场数据归一化总水平导数垂向导数边缘识别方法[J]. 应用地球物理, 2009, 6(3): 226-233.
WANG Wan-Yin,PAN Yu,QIU Zhi-Yun. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. APPLIED GEOPHYSICS, 2009, 6(3): 226-233.
 
[1] Cooper, G. R. J., and Cowan, D. R., 2008, Edge enhancement of potential-field data using normalized statistics: Geophysics, 73(3), H1 - H4.
[2] Cordell, L., 1979, Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico: New Mexico Geol. Soc. Guidebook, 30th Field Conf., 59 - 64.
[3] Cordell, L., and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: in Hinze, W. J., Ed., The utility of regional gravity and magnetic anomaly maps: Soc. Explor. Geophys., 181 - 197.
[4] Grauch, V. J. S., and Cordell, L., 1987, Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data: Geophysics, 52(1), 118 - 121.
[5] Hood, P. J., and Teskey, D. J., 1989, Aeromagnetic gradiometer program of the Geological Survey of Canada: Geophysics, 54(8), 1012 - 1022.
[6] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507 - 517.
[7] Nabighian, M. N., 1984, Toward a three dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations: Geophysics, 49(6), 780 - 786.
[8] Miller, H. G.., and Singh, V., 1994, Potential field tilt-a new concept for location of potential field sources: Journal of Applied Geophysics, 32, 213 - 217.
[9] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57(1), 116 - 125.
[10] Verduzco, B., Fairhead, J. D., and Green, C. M., and Mackenzie, C. 2004, The meter reader—new insights into magnetic derivatives for structural mapping: The Leading Edge, 23, 116 - 119.
[11] Wijns, C., Perez, C., and Kowalczyk, P., 2005, Theta map: Edge detection in magnetic data: Geophysics, 70(4), L39 - L43.
[12] Zhou,D., Wang,W. Y., Wang, J. L., Pang,X., Cai,D. S., and Sun,Z., 2006, Mesozoic subduction-accretion zone in northeastern South China Sea inferred from geophysical interpretations: Science in China: Science in China Series D: earth Sciences,, 49(5), 471 - 482.
[1] 李丽丽, 韩立国, 黄大年. 空间归一化边界识别方法用于判断地质体的水平位置及深度[J]. 应用地球物理, 2014, 11(2): 149-157.
[2] 陈婷, 何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
[3] 张明华, 贺颢, 王成锡. 中国区域重力信息系统建设[J]. 应用地球物理, 2011, 8(2): 170-175.
[4] 王万银, 张功成, 梁建设. 位场垂向导数零值位置空间变化规律研究[J]. 应用地球物理, 2010, 7(3): 197-209.
[5] 柴玉璞. 位场波数域转换算法误差方程及其应用[J]. 应用地球物理, 2009, 6(3): 205-216.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司