APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 384-396    DOI: 10.1007/s11770-013-0400-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
随钻声波测井有限差分数值模拟中完全匹配层吸收边界的稳定性研究
王华1, 2,陶果1,尚学峰2,方鑫定2,Daniel R Burns2
1. 油气资源与探测国家重点实验室,中国石油大学(北京),北京昌平 102249
2. 美国麻省理工学院地球资源实验室,剑桥市,马塞诸塞州,美国 02139
Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes
Wang Hua1,2, Tao Guo1, Shang Xue-Feng2, Fang Xin-Ding2, and Daniel R Burns2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. Earth Resource Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139.
 全文: PDF (1326 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 模拟弹性波传播问题时,PML作为FDTD中至关重要的一个环节,其性能的好坏会直接关系到波场模拟的稳定性和准确度。在随钻声波测井有限差分数值模拟时,由于钻铤占据了井眼大部分空间且将井眼内流体分成极薄的两部分(半径约27 mm),使得数值模拟时需要极细的网格,从而使得时间步长极小,时间迭代步数变多,累计数值误差增大;介质之间的波阻抗差异大(流体和钻铤之间的波阻抗差异超过30倍),对边界处的吸收性能要求高。采用FDTD模拟这种特殊环境中的波场时,累计的数值误差及不佳的吸收效果会导致数值不稳定,这是一个亟待解决的问题。本文首次针对随钻声波测井的复杂井身结构引起的模式波复杂的情况,系统地分析了现今流行的几种PML方法(分裂式PML(SPML),多轴PML(MPML),非分裂式PML(NPML)及复频变换PML(CFS-PML))的吸收效果及各自的优缺点,比较了各种PML在随钻声波测井数值模拟中的适应性。结果表明,相比SPML和MPML,NPML和CFS-PML能够更有效地吸收来自计算边界的反射导波;SPML, MPML和NPML在长的模拟时间时会出现数值不稳定现象,而MPML的稳定性可以通过微调参数得到改善。针对分析结果,首次提出在FDTD方法中采用CFS-PML来消除随钻声波测井数值模拟时的数值不稳定及改善吸收效果。为了得到随钻声波测井数值模拟中的CFS-PML的最优化参数,利用并行机计算了数千个三维模型。对典型随钻情形,二次项衰减剖面的最大值应为一倍的d0。线性频移因子和尺度因子的最大值的优选范围与PML层的厚度有关。对一般地层而言,如果PML层的厚度为十个网格,利用最优化的参数,可以得到的全局误差小于百分之一,且该误差会随PML层厚度的增加而降低。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王华
陶果
尚学峰
方鑫定
Daniel R Burns
关键词完全匹配层方法   有限差分模拟   随钻声波测井     
Abstract: In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ~27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M-PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d0. The optimal parameter space for the maximum value of the linear frequency-shifted factor (α0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
Key wordsPML schemes   FD simulation   LWD acoustic   
收稿日期: 2013-06-17;
基金资助:

本研究由国家自然科学基金支持(编号:41174118)、国家重大专项(编号:2008ZX05020-004)、中国博士后基金一等资助(编号:2013M530106)和国家留学基金(编号:2010644006)赞助。

引用本文:   
王华,陶果,尚学峰等. 随钻声波测井有限差分数值模拟中完全匹配层吸收边界的稳定性研究[J]. 应用地球物理, 2013, 10(4): 384-396.
WANG Hua,TAO Guo,SHANG Xue-Feng et al. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes[J]. APPLIED GEOPHYSICS, 2013, 10(4): 384-396.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods: Bulletin Of The Seismological Society Of America, 58, 367 - 398.
[2] Aron, J., Chang, S. K., Codazzi, D., Dworak, R., Hsu, K., Lau, T., Minerbo, G., and Yogeswaren, E, 1997, Real-time sonic logging while drilling in hard and soft rocks: SPWLA 38th Annual Logging Symposium, Paper HH.
[3] Berenger, J, 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114, 185 - 200.
[4] Berenger, J. P., 1997, Improved PML for the FDTD solution of wave-structure interaction problems: IEEE Transactions on Antennas and Propagation, 45, 466 - 473.
[5] Bouchon, M., and Aki, K., 1977, Discrete wave-number representation of seismic-source wave fields: Bulletin of the Seismological Society of America, 67, 259 - 277.
[6] Byun, J., and Toksoz, M. N., 2003, Analysis of the acoustic wave fields excited by the logging-while-drilling (LWD) tool: Geosytem Eng., 6, 19 - 25.
[7] Carcione, J. M., 1994, The wave equation in generalized coordinates: Geophysics, 59, 1911 - 1919.
[8] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705 - 708.
[9] Chen, Y., and Chew, W. C.,and Liu, Q., 1998, A three-dimensional finite difference code for the modeling of sonic logging tools: Journal of the Acoustical Society of America, 103, 702 - 712.
[10] Cheng, C. H., and Toksoz, M. N., 1981, Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs: Geophysics, 46, 1042 - 1053.
[11] Cheng, N., 1994, Borehole Wave Propagation in Isotropic and Anisotropic Media:Three-Dimensiona Finite Difference Approach: PhD thesis, Massachusetts Institute of Technology, USA.
[12] Chew, W. C., and Liu, Q. H., 1996, Perfectly matched layers for elastodynmics:A new absorbing boundary condition: J.Comp.Acoust., 4, 341 - 359.
[13] Chew, W. C., and Weedon, W.H., 1994, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates: Microwave Optical Tech. Letters, 7, 599 - 604.
[14] Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society, 67, 1529 - 1540.
[15] Cohen, G., Joly, P., and Tordjman, N., 1993, Construction and analysis of higher-order finite elements with mass lumping for the wave equation: Conference Construction and Analysis of Higher-order Finite Elements with Mass Lumping for the Wave Equation, 152 - 160.
[16] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66, 294 - 307.
[17] Dmitriev, M., and Lisitsa, V., 2011, Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part I: Reflectivity: Numerical Analysis and Applications, 4, 271 - 280.
[18] Guan, W.,?Hu H.,?and?He, X.,?2009,?Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation:?J. acoust. Soc. Am., 125(4),?1942 - 1950.
[19] Higdon, R. L., 1990, Radiation boundary conditions for elastic wave propagation: SIAM Journal on Numerical Analysis,27, 831-869.
[20] Huang, X., 2003, Effects of tool positions on borehole acoustic measurements: a stretched grid finite difference approach: PhD thesis, Massachusetts Institute of Technology, USA.
[21] Kawase, H., 1988, Time-domain response of a semi-circular canyon for incident SV, P and Rayleigh waves calculated by the discrete wavenumber boundary element method: Bulletin of the Seismological Society of America, 78, 1415 - 1437.
[22] Kimball, C. V., and Marzetta, T. L., 1984, Semblance processing of borehole acoustic array data: Geophysics, 49, 274 - 281.
[23] Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72, SM155 - SM167.
[24] Kurkjian, A., and Chang, S. K., 1986, Acoustic multipole sources in fluid filled boreholes: Geophysics, 51, 148 - 163.
[25] Kuzuoglu, M., and Mittra, R., 1996, Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers: Microwave and Guided Wave Letters, IEEE, 6, 447 - 449.
[26] Lysmer, J., and Drake, L. A., 1972, A finite element method for seismology, in B. Alder, S. Fernbach, and B. A. Bolt, eds: Methods in computational physics, 181 - 216.
[27] Madariaga, R., 1976, Dynamics of an expanding circular: Bulletin of the Seismological Society of America, 66, 639 - 666.
[28] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49, 533 - 549.
[29] Martin, R. D., Komatitsch, S. D., Gedney, and Bruthiaux, E., 2010, A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equations (ADE-PML): CMES, 56, 17 - 40.
[30] Matuszyk, P. J., and Torres-Verdin, C., 2011, HP-adaptive multi-physics finite-element simulation of wireline borehole sonic waveforms: SEG Technical Program Expanded Abstracts, 30, 444 - 448.
[31] Meza-Fajardo, K. C., and Papageorgiou, A. S., 2008, A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis: Bulletin of the Seismological Society of America, 98, 1811 - 1836.
[32] Roden, J. A., and Gedney, S. D., 2000, Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media: Microwave and Optical Technology Letters, 27, 334 - 338.
[33] Schmitt, D., and Bouchon, M., 1985, Full-wave acoustic logging: Synthetic micro seismogram and frequency-wave number analysis: Geophysics, 50, 1756 - 1778.
[34] Skelton, E. A., Adams, S. D. M., and Craster, R.V., 2007, Guided elastic waves and perfectly matched layers: Wave Motion, 44, 573 - 592.
[35] Smith, W. D., 1974, A nonreflecting plane boundary for wave propagation problems: Journal of Computational Physics, 15, 492 - 503.
[36] Sochacki, J., Kubichek, R., George, J., Fletcher, W. R., and Smithson, S., 1987, Absorbing boundary conditions and surface waves: Geophysics, 52, 60 - 71.
[37] Tao, G., He, F., Wang, B., Wang, H., and Chen, P., 2008, Study on 3D simulation of wave fields in acoustic reflection image logging: Science China (Earth Sciences Version), 51(S2), 186 - 194.
[38] Tessmer, E., and Kosloff, D., 1994, 3-D elastic modeling with surface topography by a Chebyshev spectral method: Geophysics, 59, 464 - 473.
[39] Virieux, J., 1984, SH wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 49, 1933 - 1957.
[40] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51, 889 - 901.
[41] Wang, H., and Tao, G., 2011, Wavefield simulation and data-acquisition-scheme analysis for LWD acoustic tools in very slow formations: Geophysics, 76, E59 - E68.
[42] Wang, H., Tao, G., Wang, B., Li, W., and Zhang, X., 2009, Wave field simulation and data acquisition scheme analysis for LWD acoustic tool: Chinese J. Geophysics (In Chinese), 52, 2402 - 2409.
[43] Wang, H., Tao, G., Zhang, K., and Li, J., 2012, Numerical simulations for acoustic reflection imaging with FDM and FEM: EAGE Technical Program Expanded Abstracts, E041.
[44] Wang, H., Tao, G., and Zhang, K., 2013, Wavefield simulation and analysis with the finite-element method for acoustic logging while drilling in horizontal and deviated wells: Geophysics, 78(6), D525 - D543.
[45] Wang, T., and Tang, X., 2003a, Investigation of LWD quadrupole shear measurement in real environments: SPWLA 44th Annual Logging Symposium, Paper KK.
[46] Wang, T., and Tang, X., 2003b, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 68, 1749 - 1755.
[47] He, X., Hu, S., and Wang, X., 2013, Finite difference modeling of dipole acoustic logs in a poroelastic formation with anisotropic permeability: Geophys. J. Int. 192(1), 359 - 374.
[48] Zhang, W., and Shen, Y., 2010, Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling: Geophysics, 75, T141 - T154.
[49] Zhu, J., 1999, A transparent boundary technique for numerical modeling of elastic waves: Geophysics, 64, 963 - 966.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司