APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 397-410    DOI: 10.1007/s11770-013-0407-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
径向基函数插值方法分析
邹友龙1,2,胡法龙1,周灿灿1,李潮流1,李长喜1,Keh-Jim Dunn1
1. 中国石油勘探开发研究院,北京 100083
2. 中国石油大学,北京 102249
Analysis of radial basis function interpolation approach
Zou You-Long1,2, Hu Fa-Long1, Zhou Can-Can1, Li Chao-Liu1, and Dunn Keh-Jim1
1. Research Institute of Petroleum Exploration and Development, Beijing 100083, China.
2. China University of Petroleum, Beijing 102249, China.
 全文: PDF (1278 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Freedman提出了径向基函数插值方法用于解决测井和其它岩石物理问题中遇到的反问题。该方法利用一组测量数据集来预测物理性质。然而,该方法仍有一些问题需要研究,如刻度数据集的空间分布对插值效果的影响。本文提出了一种新的径向基函数插值方法,在输入参数空间域中均匀填充单位基函数,并且利用地层因子、粘度、渗透率和分子组成的数据集对这两种方法做了分析和比较。两种插值方法效果相当,新方法的基函数操作更为灵活。当数据库较大时,新方法可适当减少基函数个数,从而简化插值函数表达式。考察数据集空间分布对插值效果的影响,发现当数据集群相距甚远时,中部数据的预测效果不是很理想。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹友龙
胡法龙
周灿灿
李潮流
李长喜
Keh-Jim Dunn
关键词反问题   径向基函数插值   新方法     
Abstract: The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied  when the data clusters are far apart.
Key wordsInverse problems   radial basis function interpolation   new approach   
收稿日期: 2012-08-09;
基金资助:

本研究由国家科技重大专项“复杂储层油气测井解释理论方法与处理技术”(2011ZX05020-008)和中国石油天然气集团公司测井前沿技术与应用基础研究项目(2011A-3901)资助。

引用本文:   
邹友龙,胡法龙,周灿灿等. 径向基函数插值方法分析[J]. 应用地球物理, 2013, 10(4): 397-410.
ZOU You-Long,HU Fa-Long,ZHOU Can-Can et al. Analysis of radial basis function interpolation approach[J]. APPLIED GEOPHYSICS, 2013, 10(4): 397-410.
 
[1] Anand, V., and Freedman, R., 2009, New methods for predicting properties of live oils from NMR: SPWLA 50th Annual Logging Symposium, paper DD.
[2] Franke, R., 1982, Scattered data interpolation: Tests of some methods: Mathematics of Computation, 38(157), 181 - 200.
[3] Freedman, R., 2006, New approach for solving inverse problems encountered in well-logging and geophysical applications: Petrophysics, 47(2), 93 - 111.
[4] Freedman, R., Lo, S., Flaum, M., Hirasaki, G. J., Matteson, A., and Sezginer, A., 2001, A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results: SPE Journal, 6(4), 452 - 464.
[5] Gao, B., Wu, J., Chen, S., Kwak, H., and Funk, J., 2011, New method for predicting capillary curves from NMR data in carbonate rocks: SPWLA 52th Annual Logging Symposium.
[6] Haykin, S., 1999, Neural Networks: A comprehensive Foundation: Prentice Hall, Hamilton, Ontario, Canada.
[7] Kansa, E. J., 1990, Multiquadrics- A scattered data approximation scheme with applications to computational fluid dynamics - II, Solutions to Parabolic, Hyperbolic and Elliptic partial differential equations: Computers and Mathematics with Applications, 19(8 - 9), 147 - 161.
[8] Lukaszyk, S., 2004, A new concept of probability metric and its applications in approximation of scattered data sets: Computational Mechanics, 33(4), 299 - 304.
[9] Micchelli, C. A., 1986, Interpolation of scattered data: Distance matrices and conditionally positive definite functions: Constructive Approximation, 2, 11 - 22.
[10] Powell, M. J. D., 2001, Radial basis function methods for interpolation to functions of many variables: Presented at the Fifth Hellenic-European Computer Mathematics and its Applications, 1 - 23.
[1] 刘希强, 蔡寅, 赵瑞, 曲保安, 赵银刚, 冯志军, 李红. 基于四阶统计量的区域地震信号自动识别方法及应用[J]. 应用地球物理, 2014, 11(2): 128-138.
[2] 王汉闯, 陈生昌, 张博, 佘德平. 多震源混合地震数据分离方法[J]. 应用地球物理, 2013, 10(3): 251-264.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司