APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 323-336    DOI: 10.1007/s11770-013-0388-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
时域有限元弹性波模拟中的位移格式完全匹配层吸收边界
赵建国1,史瑞其2
1. 中国石油大学(北京)地球物理与信息工程学院、油气资源与探测国家重点实验室和CNPC物探重点实验室,北京 102249
2. 中国海洋石油研究总院,北京 100027
Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations
Zhao Jian-Guo1 and Shi Rui-Qi2
1. College of Geophysics and information engineering, China University of Petroleum (Beijing), State Key Lab of Petroleum Resource and Prospecting, and CNPC Key Lab of China University of Petroleum (Beijing), Beijing 102249, China.
2. CNOOC Research Institute, Beijing 100027, China.
 全文: PDF (1914 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 完全匹配层是地震波方程数值模拟中一种高效的吸收边界条件,本文目的在于将这种技术用于时域有限元弹性波数值模拟中。但时域有限元法是基于二阶位移格式的波动方程的数值模拟方法,所以一阶速度-应力格式的完全匹配层不能直接用于该数值模拟方法中。本文推导了二阶位移格式完全匹配层的有限元矩阵方程,实现了完全匹配层在时域有限元弹性波模拟中的应用。在二维均匀弹性介质P-SV波和SH波传播的有限元模拟中,完全匹配层对体波和面波具有近似零反射系数;不规则地表双层介质模型的数值实验验证了完全匹配层在复杂构造非均质地质模型中地震波传播模拟的效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵建国
史瑞其
关键词吸收边界条件   弹性波方程   完全匹配层   有限元数值模拟     
Abstract: The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second-order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite-element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
Key wordsAbsorbing boundary condition   elastic wave equation   perfectly matched layer   finite-element modeling   
收稿日期: 2012-12-20;
基金资助:

本研究由国家自然科学基金项目(批准号:41274138)和中国石油大学(北京)基础研究基金(批准号:KYJJ2012-05-25)资助。

作者简介: 赵建国,副教授,分别于1998年、2002年获得长春地质学院勘探地球物理学士和硕士学位。2006年获得日本东北大学博士勘探地球物理博士学位。博士毕业后于2006年到中国石油大学(北京)工作。研究方向主要为地震全波形反演,地震资料处理,高精度地震-电磁联合反演以及岩石物理。
引用本文:   
赵建国,史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
ZHAO Jian-Guo,SHI Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations[J]. APPLIED GEOPHYSICS, 2013, 10(3): 323-336.
 
[1] Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O’Hallaron, D. R., Shewchuk, J. R., and Xu, J., 1998, Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers: Computer Methods in Applied Mechanics and Engineering, 152, 85 - 102.
[2] Bécache, E., Fauqueux, S., and Joly, P., 2003, Stability of perfectly matched layers, group velocities and anisotropic waves: Journal of Computational Physics, 188(2), 399 - 433.
[3] Bérenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185 - 200.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equation: Geophysics, 50(4), 705 - 708.
[5] Chew, W. C., and Liu, Q., 1996, Perfectly matched layers for elastodynamics: A new absorbing boundary condition: Journal of Computational Acoustics, 4(4), 341 - 359.
[6] Chew, W. C., and Weedon, W. H., 1994, A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates: Microwave and Optical Technology Letters, 7(13), 599 - 604.
[7] Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America, 67(6), 1529 - 1540.
[8] Cohen, G. C., 2002, Higher-order Numerical Methods for Transient Wave Equations: Springer: Berlin.
[9] Collino, F., and Tsogka, C., 2001, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[10] Courant, R., Friedrichs, K. O., and Lewy, H., 1928, über die partiellen Differenzengleichungen der mathematischen Physik: Mathematische Annalen, 100, 32 - 74.
[11] Drake, L. A., 1972, Rayleigh wave at continental boundary by the finite element method: Bulletin of the Seismological Society of America, 62(5), 1259-1268.
[12] Engquist, B., and Majda, A., 1977, Absorbing boundary conditions for the numerical simulation of waves: Proceedings of the National Academy of Science, 74(5), 1765 - 1766.
[13] Hastings, F. D., Schneider, J. B., and Broschat, S. L., 1996, Application of the perfectly matched layer PML absorbing boundary condition to elastic wave propagation: Journal of the Acoustical Society of America, 100(5), 3061 - 3069.
[14] Higdon, R. L., 1991, Absorbing boundary conditions for elastic waves: Geophysics, 56(2), 231 - 241.
[15] Katsibas, T. K., and Antonopoulos, C. S., 2002, An efficient PML absorbing medium in FDTD simulations of acoustic scattering in lossy media: IEEE Proceeding on Ultrasonic Symposium, 1, 551 - 554.
[16] Komatitsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysical Journal International, 154(1), 146 - 153.
[17] Liu, Q., and Tao, J., 1997, The perfectly matched layer for acoustic waves in absorptive media: Journal of the Acoustical Society of America, 102(4), 2072 - 2082.
[18] Liu, Q. H., 1999, Perfectly matched layers for elastic waves in cylindrical and spherical coordinates: Journal of the Acoustical Society of America, 105(4), 2075 - 2084.
[19] Madariaga, R., 2007, Seismic source theory. Treatise on Geophysics, Amsterdam: Elsevier, 59 - 82.
[20] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equation: Geophysics, 49(5), 533 - 549.
[21] Meza-Fajardo, K. C., and Papageorgiou, A. S., 2008, A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis: Bulletin of the Seismological Society of America, 98(4), 1811 - 1836.
[22] Newmark, N. M., 1959, A method of computation for structural dynamics: ASCE Journal of the Engineering Mechanics Division, 85(3), 67 - 94.
[23] Quarteroni, A., Tagliani, A., and Zampieri, E., 1998, Generalized Galerkin approximations of elastic waves with absorbing boundary conditions: Computer Methods in Applied Mechanics and Engineering, 163, 323 - 341.
[24] Shi, R., Wang, S., and Zhao, J., 2012, An unsplit complex-frequency-shifted PML based on matched Z-transform for FDTD modeling of seismic wave equations: Journal of Geophysics and Engineering, 9, 218 - 229.
[25] Sochacki, J., Kubichek, R., George, J., Fletcher, W. R., and Smithson, S., 1987, Absorbing boundary conditions and surface waves: Geophysics, 52(1), 60 - 71.
[26] Stacey, R., 1988, Improved transparent boundary formulations for the elastic wave equation: Bulletin of the Seismological Society of America, 78(6), 2089 - 2097.
[27] Zeng, Y. Q., He, J. Q., and Liu, Q. H., 2001, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Geophysics, 66(4), 1258 - 1266.
[28] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J., 2005, The Finite Element Method: its Basis and Fundamentals (6th edition): Elsevier Butterworth-Heinemann, London.
[1] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[2] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[3] 王华, 陶果, 尚学峰, 方鑫定, Daniel R Burns. 随钻声波测井有限差分数值模拟中完全匹配层吸收边界的稳定性研究[J]. 应用地球物理, 2013, 10(4): 384-396.
[4] 杨皓星, 王红霞. 用于地震波场模拟的PML边界衰减因子研究[J]. 应用地球物理, 2013, 10(1): 63-70.
[5] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[6] 刘炯, 马坚伟, 杨慧珠. SH波场中完全匹配层吸收边界研究[J]. 应用地球物理, 2009, 6(3): 267-274.
[7] 秦臻, 卢明辉, 郑晓东, 姚姚, 张才, 宋建勇. 弹性波正演模拟中改进的非分裂式PML实现方法[J]. 应用地球物理, 2009, 6(2): 113-121.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司