APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 337-348    DOI: 10.1007/s11770-013-0390-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于脉冲压缩技术的混凝土缺陷成像方法研究
李长征1,2,张碧星1,师芳芳1,谢馥励1
1. 中国科学院声学研究所声场声信息国家重点实验室,北京 100190
2. 黄河水利科学研究院,郑州 450003
Research on the imaging of concrete defect based on the pulse compression technique
Li Chang-Zheng1,2, Zhang Bi-Xing1, Shi Fang-Fang1, and Xie Fu-Li1
1. State Key Laboratory of Acoustic, Institute of Acoustics, Chinese Academy of Sciences, Beijing.
100190, China.
2. The Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 全文: PDF (1481 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 利时用合成孔径聚焦技术(SAFT)检测混凝土缺陷,常规的短脉冲检测方法信噪比较低,导致检测距离较浅,使应用范围受到限制。本文引入雷达探测中使用的脉冲压缩技术,并提出了改进的基于脉冲压缩技术的合成孔径聚焦检测方法(ISAFT)。该方法通过发射线性调频信号(LFM),将缺陷回波信号经匹配滤波进行脉冲压缩处理,得到的压缩信号具有主瓣宽度较窄、峰值较高的特点。然后利用该压缩信号进行SAFT成像处理,提高了图像对比度。与常规的短脉冲检测方法相比,该方法既提高了信噪比,又保证了缺陷检测的分辨率。理论和实验结果表明,该方法不仅能抑制噪声提高成像对比度,而且还适用于混凝土内部多个缺陷的检测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李长征
张碧星
师芳芳
谢馥励
关键词混凝土缺陷   线性调频信号   脉冲压缩   合成孔径聚焦技术   信噪比     
Abstract: When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.
Key wordsConcrete defect   LFM   pulse compression   SAFT   SNR   
收稿日期: 2012-11-15;
基金资助:

本研究由国家自然科学基金(编号:11074273)和水利部公益性行业科研专项(编号:201301061)资助。

作者简介: 李长征,2005年硕士毕业于长江大学应用地球物理专业,2005年 ~ 2010年在黄河水利科学研究院从事水利工程检测研究工作,2010年至今在中国科学院声学研究所攻读博士学位。
引用本文:   
李长征,张碧星,师芳芳等. 基于脉冲压缩技术的混凝土缺陷成像方法研究[J]. 应用地球物理, 2013, 10(3): 337-348.
LI Chang-Zheng,ZHANG Bi-Xing,SHI Fang-Fang et al. Research on the imaging of concrete defect based on the pulse compression technique[J]. APPLIED GEOPHYSICS, 2013, 10(3): 337-348.
 
[1] Chang, Y. F., Wang, C. Y., and Hsieh, C. H., 2001, Feasibility of detecting embedded cracks in concrete structures by reflection seismology: NDT&E International, 34(1), 39 - 48.
[2] Chiao, R. Y., and Hao, X. H., 2005, Coded excitation for diagnostic ultrasound: a system developer’s perspective: Ultrasonics, IEEE Transactions on Ferroelectrics and Frequency Control, 52(2), 160 - 170.
[3] Hayes, M. P., and Gough, P. T., 1992, Broad-band synthetic aperture sonar: IEEE Journal of Oceanic Engineering, 17(1), 80 - 94.
[4] Lancée, C. T., Vissers, J. M., Mientki, S., Ligtvoet, C. M., and Bom, N., 1987, Influence of phase errors on beam-steered phased arrays: Ultrasonics, 25(3), 154 - 159.
[5] Liang, M. T., and Su, P. J., 2001, Detection of the corrosion damage of rebar in concrete using impact-echo method: Cement and Concrete Research, 31(10), 1427 - 1436.
[6] Li, Q. F., Shi, L. H., and Liang, D. K., 2008, Study on 2D imaging technique for concrete cross section based on SAFT: Acta Acoustic, 33(4), 370 - 377.
[7] Litniewski, J., Nowicki, A., Klimonda, Z., and Lewandowski, M., 2007, Sound Fields for Coded Excitations in Water and Tissue: Experimental Approach: Ultrasound in Medicine & Biology, 33(4), 601 - 607.
[8] Liu, P. L., Tsai, C. D., and Wu, T. T., 1996, Imaging of surface-breaking concrete cracks using transient elastic waves: NDT& E International, 29(5), 323 - 331.
[9] Ludwig, R., and Roberti, D., 1989, A nondestructive ultrasonic imaging system for detection of flaws in metal blocks: IEEE Transactions on Instrumentation and Measurement, 38(1), 113 - 118.
[10] Mamou, J., Ketterling, J. A., and Silverman, R. H., 2008, Chirp-coded excitation imaging with a high-frequency ultrasound annular array: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(2), 508 - 513.
[11] Marti?n-Arguedas, C. J., Romero-Laorden, D., Marti?nez-Graullera, O., Pe?rez-Lo?pez, M., and Go?mez-Ullate, L., 2012, An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 59(7), 1402 - 1412.
[12] Misaridis, T., and Jensen, J. A., 2005, Use of modulated excitation signals in medical ultrasound. Part II: basic concepts and expected benefits: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(2), 192 - 207.
[13] O’Donnell, M., and Wang, Y., 2005, Coded excitation for synthetic aperture ultrasound imaging: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(2), 171 - 176.
[14] Popovics, J. S., and Rose, J. L., 1994, A survey of developments in ultrasonic NDE of concrete: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(1), 140 - 143.
[15] Qin, Z., Lu, M. H., Zheng, X. D., Yao, Y., Zhang, C., and Song, J. Y., 2009, The implementation of an improved NPML absorbing boundary condition in elastic wave modeling: Applied Geophysics, 6(2), 113 - 121.
[16] Tong, J. H., Liao, S. T., and Lin, C. C., 2007, A new elastic-wave-based imaging method for scanning the defects inside the structure: IEEE Transactions on ltrasonics, Ferroelectrics and Frequency Control, 54(1), 128 - 137.
[17] Wooh, S. C., and Shi, Y. J., 1998, Influence of phased array element size on beam steering behavior: Ultrasonics, 36(6), 737 - 749.
[18] Wu, T. T., Fang, J. S., and Liu, P. L., 1995, Detection of the depth of a surface-breaking crack using transient elastic waves: J. Acoust. Soc. Am, 97(3), 1678 - 1686.
[19] Yoshihiko, O., Hiroaki, S., Toshimasa, T., and Mitsuo, T., 1988, A new system for real-time synthetic aperture ultrasonic imaging: Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 35(6), 828 - 838.
[20] Zhang, C. G., Zhang, B. X., Deng, F. Q., and Shi, F. F., 2008, Non-integer dimension ultrasonic phased array testing: Acta Acustica, 33(6), 555 - 561.
[1] 许辉群, 桂志先. 信噪比数据体在标准层分析及断裂检测中的应用探讨[J]. 应用地球物理, 2014, 11(1): 73-79.
[2] 李国发, 彭更新, 岳英, 王万里, 崔永福. 基于信号纯度谱的有色反褶积[J]. 应用地球物理, 2012, 9(3): 333-340.
[3] 黄哲远, 甘利灯, 戴晓峰, 李凌高, 王军. 随机地震反演关键参数优选和效果分析[J]. 应用地球物理, 2012, 9(1): 49-56.
[4] 李桂林, 陈高, 钟俊义. 陆上高分辨率地震勘探检波器性能及应用效果分析[J]. 应用地球物理, 2009, 6(1): 93-101.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司