APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2020, Vol. 17 Issue (2): 277-284    DOI: 10.1007/s11770-020-0815-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Application of GPR reverse time migration in tunnel lining cavity imaging*
Lv Yu-zeng 1,2, Wang Hong-hua ♦1,2, Gong Jun-bo 1
1. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China.
2. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin, 541004, China.
 Download: PDF (1462 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Correctly locating the tunnel lining cavity is extremely important tunnel quality inspection. High-accuracy imaging results are hard to obtain because conventional one-way wave migration is greatly affected by lateral velocity change and inclination limitation and because the diffracted wave cannot be accurately returned to the real spatial position of the lining cavity. This paper presents a tunnel lining cavity imaging method based on the groundpenetrating radar (GPR) reverse-time migration (RTM) algorithm. The principle of GPR RTM is described in detail using the electromagnetic wave equation. The finite-difference timedomain method is employed to calculate the backward extrapolation electromagnetic fi elds, and the zero-time imaging condition based on the exploding-reflector concept is used to obtain the RTM results. On this basis, the GPR RTM program is compiled and applied to the simulated and observed GPR data of a typical tunnel lining cavity GPR model and a physical lining cavity model. Comparison of RTM and Kirchhoff migration results reveals that the RTM can better converge the diffracted waves of steel bar and cavity to their true positionand have higher resolution and better suppress the effect of multiple interference and clutter scattering waves. In addition, comparison of RTM results of different degrees of noise shows that RTM has strong anti-interference ability and can be used for the accurate interpretation of radar profile in a strong interference environment.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsTunnel lining cavity   ground-penetrating radar (GPR)   reverse-time migration(RTM)   zero-time imaging condition     
Received: 2019-05-20;
Corresponding Authors: Wang Hong-hua (Email: wanghonghua5@163.com)   
 E-mail: wanghonghua5@163.com
About author: Lv Yuzeng graduated with a PhD from the Institute of Applied Geophysics, Central South University, in 2008. He is now an Associate Professor at the College of Earth Sciences, Guilin University of Technology. His research interest is electromagnetic numerical simulation and inversion imaging. Email: Lyz@glut.edu.cn
Cite this article:   
. Application of GPR reverse time migration in tunnel lining cavity imaging*[J]. APPLIED GEOPHYSICS, 2020, 17(2): 277-284.
 
No references of article
[1] Huang Jian-Ping, Mu Xin-Ru?, Li Zhen-Chun, Li Qing-Yang, Yuan Shuang-Qi , and Guo Yun-Dong. Pure qP-wave least-squares reverse time migration in vertically transverse isotropic media and its application to field data*[J]. APPLIED GEOPHYSICS, 2020, 17(2): 208-220.
[2] Qu Ying-Ming, Zhou Chang, Worral Qurmet, Li Zhen-Chun, Wang Chang-Bo, and Sun Jun-Zhi. Elastic reverse-time migration in irregular tunnel environment based on polar coordinates*[J]. APPLIED GEOPHYSICS, 2020, 17(2): 253-266.
[3] Li Kai-Rui and He Bing-Shou. Extraction of P- and S-wave angle-domain common-image gathers based on fi rst-order velocity-dilatation-rotation equations*[J]. APPLIED GEOPHYSICS, 2020, 17(1): 92-102.
[4] Liu Ming-Zhu and He Bing-Shoug. Suppress numerical dispersion in reversetime migration of acoustic wave equation using optimal nearly analytic discrete method*[J]. APPLIED GEOPHYSICS, 2020, 17(1): 133-142.
[5] Feng De-Shan , Zhang Hua , and Wang Xun . Second-generation wavelet fi nite element based on the lifting scheme for GPR simulation*[J]. APPLIED GEOPHYSICS, 2020, 17(1): 143-153.
[6] Cui Fan , Li Shuai, Yuan Jiong-Xuan, Bai Jie-Bin , Zhao Yu-Xuan, and Zhou Ying-Ging. GPR based RTM imaging technology for estimating rhizome diameters and application in the western China mining area*[J]. APPLIED GEOPHYSICS, 2020, 17(1): 154-166.
[7] Li Yu-Sheng, Li Ning, Yuan ye, Wu Hong-Liang, Feng Zhou, and Liu Peng. Optimizing the wavefi eld storage strategy in refl ection-acoustic logging reverse-time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(4): 537-544.
[8] Qu Ying-Ming, Huang Chong-Peng, Liu Chang, Zhou Chang, Li Zhen-Chun, and Worral Qurmet. Multiparameter least-squares reverse time migration for acoustic–elastic coupling media based on ocean bottom cable data*[J]. APPLIED GEOPHYSICS, 2019, 16(3): 327-337.
[9] Cai Zhong-Zheng, Han Li-Guo, and Xu Zhuo. Passive multiple reverse time migration imaging based on wave decomposition and normalized imaging conditions*[J]. APPLIED GEOPHYSICS, 2019, 16(3): 338-348.
[10] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[11] Wang Bao-Li ,Gao Jing-Huai . The research and implementation of velocity analysis methods for reverse time migration angle-gather[J]. APPLIED GEOPHYSICS, 2018, 15(3-4(2)): 682-696.
[12] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[13] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[14] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[15] Sun Xiao-Dong, Li Zhen-Chun, Jia Yan-Rui. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn