Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China
Liu Xi-Wu1,2,3, Guo Zhi-Qi4, Liu Cai4, and Liu Yu-Wei1,2,3
1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China.
2. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China.
3. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China.
4. Jilin University, Changchun 130021, China.
Abstract The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induced by the alignment of clay minerals. Then, we perform the inversion of CL and the Thomsen anisotropy parameters. The direct measurement of anisotropy is difficult because of the inability to measure the acoustic velocity in the vertical direction in boreholes and instrument limitations. By introducing the parameter CL, the inversion method provides reasonable estimates of the elastic anisotropy in the Longmaxi shale. The clay content is weakly correlated with the CL parameter. Moreover, the parameter CL is abnormally high at the bottom of the Longmaxi and Wufeng Formations, which are the target reservoirs. Finally, we construct rock physics templates to interpret well logging and reservoir properties.
The research is supported by the Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (No. G5800-16-ZS-KFZY002), the NSFC and SinoPEC Joint Key Project (No. U1663207), and the National Natural Science Foundation of China (No. 41404090).
Cite this article:
Hou Zhen-Long,Wei Xiao-Hui,Huang Da-Nian et al. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[1]
Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62(6), 1954-1974.
[2]
Bayuk, I. O., Ammerman, M., and Chesnokov, E. M., 2007, Elastic moduli of anisotropic clay: Geophysics, 72(5), D107-D117.
[3]
Slatt, R. M., and Abousleiman, Y., 2011, Merging sequence stratigraphy and geomechanics for unconventional gas shale: The Leading Edge, 30(3), 274-282.
[4]
Berryman, J. G., 1995, Mixture theories for rock properties in Rock Physics and Phase Relations - a Handbook of Physical Constants: Washington, DC, American Geophysical Union.
[5]
Carcione, J. M., 2000, A model for seismic velocity and attenuation in petroleum source rocks: Geophysics, 65(4), 1080-1092.
Carcione, J. M., 2001, Amplitude variations with offset of pressure-seal reflections: Geophysics, 61(1), 283-293.
[8]
Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales -A petrophysical study: Geophysics, 62(2), 521-532.
[9]
Vernik, L., and Nur, A., 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727-735.
[10]
Carcione, J. M., Helle, H. B., and Avseth, P., 2011, Source-rock seismic-velocity models Gassmann versus Backus: Geophysics, 76(5), N37-N45.
[11]
Wang, Z. J., 2002a, Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method: Geophysics, 67(5), 1415-1422.
[12]
Deng, J. X., Wang, H., Zhou, H., et al., 2015, Microstructure, seismic rock physical properties and modeling of Longmaxi Formation shale: Chinese Journal of Geophysics (in Chinese), 58(6), 2123-2136.
[13]
Wang, Z. J., 2002b, Seismic anisotropy in sedimentary rocks: part 2 Laboratory data: Geophysics, 67(5), 1423-1440.
[14]
Dong, N., Huo, Z. Z., Sun, Z. D., et al., 2014, An inversion of a new rock physics model for shale:Chinese Journal of Geophysics (in Chinese), 57(6), 1990-1998.
[15]
Xu, S. Y., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(11), 66-74.
[16]
Guo, Z. Q., and Li, X. Y., 2015, Rock physics model-based prediction of shear wave velocity in the Barnett Shale formation: Journal of Geophysics and Engineering, 12, 527-534.
[17]
Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, Prediction for in-situ formation stress of shale based on rock physics equivalent model: Chinese Journal of Geophysics (in Chinese), 58(6), 2112-2122.
[18]
Guo, Z. Q., Li, X. Y., Liu, C., et al., 2013, A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale: Journal of Geophysics and Engineering, 10, 1-10.
[19]
Guo, Z. Q., Li, X. Y., and Liu, C., 2014, Anisotropy parameters estimate and rock physics analysis for the Barnett Shale: Journal of Geophysics and Engineering, 11, 1-10.
[20]
Hashin, Z., and Shtrikman, S., 1963, A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127-140.
[21]
Hornby, B. E., Schwartz, L. M., and Hudson, J. A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570-1583.
[22]
Hu, Q., Cheng, X. H., and Li, J. Y., 2014, Shear velocity prediction for organic shales based on the single aspect ratio model: Progress in Geophysics (in Chinese), 29(5), 2388-2394.
[23]
Jiang, M. J., and Spickes, K. T., 2013, Estimation of reservoir properties of the Haynesville Shale by using rock-physics modelling and grid searching: Geophysical Journal International, 195, 315-329.
[24]
Mavko, G., Mukerji, T., and Dovrkin, J., 2009, The Rock Physics Handbook (2nd edition): Cambridge University Press.
[25]
Ortega, J. A., Ulm, F. J., and Abousleiman, Y., 2009, The nanogranular acoustic signature of shale: Geophysics, 74(3), D65-D84.
[26]
Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53, 667-676.
[27]
Sayers, C. M., 2008, The elastic properties of carbonates: The Leading Edge, 27(8), 1020-1024.
[28]
Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62(6), 1954-1974.
[29]
Slatt, R. M., and Abousleiman, Y., 2011, Merging sequence stratigraphy and geomechanics for unconventional gas shale: The Leading Edge, 30(3), 274-282.
Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales -A petrophysical study: Geophysics, 62(2), 521-532.
[32]
Vernik, L., and Nur, A., 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727-735.
[33]
Wang, Z. J., 2002a, Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method: Geophysics, 67(5), 1415-1422.
[34]
Wang, Z. J., 2002b, Seismic anisotropy in sedimentary rocks: part 2 Laboratory data: Geophysics, 67(5), 1423-1440.
[35]
Xu, S. Y., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(11), 66-74.
[36]
Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, Prediction for in-situ formation stress of shale based on rock physics equivalent model: Chinese Journal of Geophysics (in Chinese), 58(6), 2112-2122.