APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (1): 10-20    DOI: 10.1007/s11770-017-0597-x
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Analysis of elastic anisotropy of tight sandstone and the influential factors
Song Lian-Teng1, Liu Zhong-Hua1, Zhou Can-Can1, Yu Jun1, Xiu Li-Jun2, Sun Zhong-Chun3, and Zhang Hai-Tao4
1. Petrochina Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
2. Exploration and Development Research Institute, Jilin Oilfield, Petro China, Songyuan, Jilin 138001, China.
3. Exploration and Development Research Institute, Xinjiang Oilfield, Pertro China, Kerarnay, Xinjiang 834000, China.
4. Exploration and Development Research Institute, Changqing Oilfield, Pertro China, Xi’an 710018, China.
 Download: PDF (994 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsTight sandstone   wave velocity   elastic properties   anisotropy     
Received: 2016-09-30;
Fund:

This research is sponsored by the National Key Technology R&D Program for the 12th five-year plan (No. 2011ZX05020-008) and the China National Petroleum Corporation Logging Basic Research Project (No. 2014A-3910).

Cite this article:   
. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
 
[1] Deng, J. X., Shi, G., and Liu, R. W., 2004, Analysis of the velocity anisotropy and its affection factors in shale and mudstone: Chinese Journal of Geophysics, 47(5), 862−868.
[2] Dewhurst, D. N., and Siggins, A. F., 2006, Impact of fabric, microcracks and stress field on shale anisotropy: Geophysical Journal International, 165(1), 135−148.
[3] Holt, R. M., Fjer, E., Raaen, A. M., et al., 1991, Shear Waves in Marine Sediments: Springer Netherlands, 167−174.
[4] Jakobsen, M., and Johansen, T. A., 2000, Anisotropic approximations for mudrocks: a seismic laboratory study: Geophysics, 65(6), 1711−1725.
[5] Domnesteanu, P., McCann, C., and Sothcott, J., 2002, Velocity anisotropy and attenuation of shale in under- and overpressured conditions: Geophysical Prospecting, 50(5), 487−503.
[6] Johnston, D. H., 1987, Physical properties of shales at temperature and pressure: Geophysics, 52(2), 1391−1401.
[7] Geertsma, J., and Smit, D. C., 1961, Some aspects of elastic wave propagation in fluid-saturated porous solids: Geophysics, 26(2), 169−181
[8] He, T., Zou, C. C., Pei, F. G., et al., 2010, Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones: Applied Geophysics, 7(2), 114-126.
[9] Johnston, J. E., and Christensen, N. I., 1995, Seismic anisotropy of shales: Journal of Geophysical Research Solid Earth, 100(B4), 5991−6003.
[10] Jones, L., and Wang, H. F., 1981, Ultrasonic velocities in Cretaceous shales from the Williston basin: Geophysics, 46(3), 288-297.
[11] Lama, R. D., and Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks-Testing Techniques and results. Vol. II: International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11(11), A218.
[12] Liu, B., 2000, Relations of elastic wave velocity and attenuation and their anisotropies to the fabric of rocks under different P-T conditions: Earth Science Frontiers, 7(1), 247−257.
[13] Mavko, G., and Jizba, D., 1991, Estimating grain scale fluid effects on velocity dispersion in rocks: Geophysics, 56(12), 1940−1949.
[14] Pei, F. G., Zou, C. C., He, T., et al., 2010, Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks: Applied Geophysics, 7(1), 1−9.
[15] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53(5), 667−676.
[16] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[17] Vernik, L., and Nur, A., 1992, Ultrasonic and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727−735.
[18] Higgins, S., Goodwin, S., Donald, A., et al., 2008, Anisotropic stress models improve completion design in Baxter shale: SPE 83th Annual Technical Conference and Exhibition, 1-10.
[19] Hornby, B. E., 1998, Experimental laboratory determination of the dynamic elastic properties of wet, drained shales: Journal of Geophysical Research Solid Earth, 103(B12), 29945−29964.
[20] Walsh, J., Sinha, B., and Donald, A., 2006, Formation anisotropy parameters using borehole sonic data: SPWLA 47th Annual Logging Symposium, 1−7.
[21] Wang, Z., 2002a, Seismic anisotropy in sedimentary rocks, part1: a single plug laboratory mechtod: Geophysics, 67(5), 1415−1422.
[22] Wang, Z., 2002b, Seismic anisotropy in sedimentary rocks, part2: Laboratory data: Geophysics, 67(5), 1423−1440.
[23] Holt, R. M., Fjer, E., Raaen, A. M., et al., 1991, Shear Waves in Marine Sediments: Springer Netherlands, 167−174.
[24] Jakobsen, M., and Johansen, T. A., 2000, Anisotropic approximations for mudrocks: a seismic laboratory study: Geophysics, 65(6), 1711−1725.
[25] Johnston, D. H., 1987, Physical properties of shales at temperature and pressure: Geophysics, 52(2), 1391−1401.
[26] Johnston, J. E., and Christensen, N. I., 1995, Seismic anisotropy of shales: Journal of Geophysical Research Solid Earth, 100(B4), 5991−6003.
[27] Jones, L., and Wang, H. F., 1981, Ultrasonic velocities in Cretaceous shales from the Williston basin: Geophysics, 46(3), 288-297.
[28] Lama, R. D., and Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks-Testing Techniques and results. Vol. II: International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11(11), A218.
[29] Liu, B., 2000, Relations of elastic wave velocity and attenuation and their anisotropies to the fabric of rocks under different P-T conditions: Earth Science Frontiers, 7(1), 247−257.
[30] Mavko, G., and Jizba, D., 1991, Estimating grain scale fluid effects on velocity dispersion in rocks: Geophysics, 56(12), 1940−1949.
[31] Pei, F. G., Zou, C. C., He, T., et al., 2010, Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks: Applied Geophysics, 7(1), 1−9.
[32] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53(5), 667−676.
[33] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[34] Vernik, L., and Nur, A., 1992, Ultrasonic and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727−735.
[35] Walsh, J., Sinha, B., and Donald, A., 2006, Formation anisotropy parameters using borehole sonic data: SPWLA 47th Annual Logging Symposium, 1−7.
[36] Wang, Z., 2002a, Seismic anisotropy in sedimentary rocks, part1: a single plug laboratory mechtod: Geophysics, 67(5), 1415−1422.
[37] Wang, Z., 2002b, Seismic anisotropy in sedimentary rocks, part2: Laboratory data: Geophysics, 67(5), 1423−1440.
[1] Duan Xi and Liu Xiang-Jun. Two-phase pore-fluid distribution in fractured media: acoustic wave velocity vs saturation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[2] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[3] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[4] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[5] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[6] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[7] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[8] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[9] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[10] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[11] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[12] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[13] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. Pitfalls of microseismic data inversion in the case of strong anisotropy[J]. APPLIED GEOPHYSICS, 2016, 13(2): 326-332.
[14] Guo Zhi-Qi, Liu Cai, Liu Xi-Wu, Dong Ning, and Liu Yu-Wei. Research on anisotropy of shale oil reservoir based on rock physics model[J]. APPLIED GEOPHYSICS, 2016, 13(2): 382-392.
[15] Yin Chang-Chun, Zhang Ping, Cai Jing. Forward modeling of marine DC resistivity method for a layered anisotropic earth[J]. APPLIED GEOPHYSICS, 2016, 13(2): 279-287.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn