APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (3): 389-400    DOI: 10.1007/s11770-015-0507-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Variable-order rotated staggered-grid method for elastic-wave forward modeling
Wang Wei-Zhong1, Hu Tian-Yue1, Lu Xue-Mei1, Qin Zhen2, Li Yan-Dong2, and Zhang Yan2
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. Research Institute of Petroleum Exploration & Development, Petro China, Beijing 100083, China.
 Download: PDF (989 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Wang Wei-Zhong
Hu Tian-Yue
Lv Xue-Mei
Qin Zhen
Li Yan-Dong
Zhang Yan
Key wordsVariable order   rotated staggered grid   dispersion   shear wave   time varying     
Received: 2014-12-15;
Fund:

This research is supported by the National Science and Technology Major Project of China (No. 2011ZX05004-003), the National Basic Research Program of China (No. 2013CB228602) and the National High Tech Research Program of China (No. 2013AA064202).

Cite this article:   
Wang Wei-Zhong,Hu Tian-Yue,Lv Xue-Mei et al. Variable-order rotated staggered-grid method for elastic-wave forward modeling[J]. APPLIED GEOPHYSICS, 2015, 12(3): 389-400.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods: Bulletin of the Seismological Society of America, 58(1), 367−398.
[2] Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAGE 3-D modeling project: 2nd update: The Leading Edge, 13(9), 949−952.
[3] Chen, H. M., Zhou, H., Lin, H., and Wang, S. X., 2013, Application of perfectly matched layer for scalar arbitrarily wide-angle wave equations: Geophysics, 78(1), T29−T39.
[4] Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications, California, 47-49.
[5] Dankbaar, J. W. M., 1985, Separation of P-waves and S-waves: Geophysical Prospecting, 33(7), 970−986.
[6] Dellinger, J., and Etgen, J., 1990, Wave-field separation in two-dimensional anisotropic media: Geophysics, 55(7), 914−919.
[7] Duan, Y. T., Hu, T. Y., Yao, F. C., and Zhang, Y., 2013, 3D elastic wave equation forward modeling based on the precise integration method: Applied Geophysics, 10(1), 71−78.
[8] Hendrick, N., and Brand, E., 2006, Practical evaluation of P- and S-wave separation via elastic wave field decomposition: Exploration Geophysics, 37(2), 139−149.
[9] Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling: Geophysical Journal International, 157(3), 1269−1296.
[10] Jackson, J. D., 1998, Classical electrodynamics, 3rd Edition: John Wiley & Sons, Inc, United States of America, 295−299.
[11] Jastram, C.,and Tessmer, E., 1994, Elastic modeling on a grid with vertically varying spacing: Geophysical Prospecting, 42(4), 357−370.
[12] Jia, Y., and Paul, S., 2009, Elastic wave mode separation for VTI media: Geophysics, 74(5), 19−32.
[13] Li, Z. C., Zhang, H., Liu, Q., and Han, W., 2007, Elastic wave high order staggered grid wave separation forward modeling: Oil Geophysical Prospecting, 42(5), 510−515.
[14] Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76(4), T79−T89.
[15] Liu, Y., and Sen, M. K., 2011b, Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101(1), 141−159.
[16] Liu, Y., and Sen, M. K., 2009, An implicit staggered-grid finite-difference method for seismic modeling: Geophysical Journal International, 179(1), 459−474.
[17] Moczo, P., 1989, Finite-difference technique for SH-wave in 2D media using irregular grids-application to the seismic response problem: Geophysical Journal International, 99(2), 321−329.
[18] O’Brien, G. S., 2010, 3D rotated and standard staggered finite-difference solutions to Biot’s poroelastic wave equations: Stability condition and dispersion analysis: Geophysics, 75(4), T111−T119.
[19] Opršal, I.,and Zahradník, J., 1999, Elastic finite-difference­ method for irregular grids: Geophysics, 64(1), 240−250.
[20] Saenger, E. H., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[21] Saenger, E. H., Gold, N., and Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite-difference method: Wave Motion, 31, 77−92.
[22] Saenger, E. H., Ciz, R., Krüger, O. S., Schmalholz, S. M., Gurevich, B., and Shapiro, S. A., 2007, Finite difference modeling of wave propagation on microscale: A snapshot of the work in progress: Geophysics, 72(5), SM293−SM300.
[23] Sun, R., McMechan, G. A., Hsiao, H. H., and Chow, J., 2004. Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286−297.
[24] Tang, J., Li, J. J., Yao, Z. A., Shao, J., and Sun, C. Y., 2015, Reservoir time-lapse variations and coda wave interferometry: Applied Geophysics, 12(2), 244−254.
[25] Tessmer, E., 2000,Seismic finite-difference modeling with spatially varying time steps: Geophysics,65(4), 1290−1293.
[26] Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 49(11), 1933−1957.
[27] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889−901.
[28] Wang, S. X., Li, X. Y., Qian, Z. P., Di, B. R., and Wei, J. X., 2007, Physical modeling studies of 3-D P-wave seismic for fracture detection: Geophysical Journal International, 168(2), 745−756.
[29] Wang, W. Z., Qin, Z., Hu, T. Y., Li, Y. D., and Zhang, Y., 2014, Elastic wave equation rotated-grid forward modeling and imaging based on wave separation method: 76th EAGE Conference and Exhibition, Extended abstract, Th G105 10.
[30] Wang, X., Dodds, K., and Zhao, H., 2006, An improved high-order rotated staggered finite-difference algorithm for simulating elastic waves in heterogeneous viscoelastic/anisotropic media: Exploration Geophysics, 37(2), 160−174.
[31] Yang, H. X., and Wang, H. X., 2013, A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves: Applied Geophysics, 10(1), 63−70.
[32] Yang, J. H., Liu, T., Tang, G., and Hu, T. Y., 2009, Modeling seismic wave propagation within complex structures: Applied Geophysics, 6(1), 30−41.
[33] Zhang, Q. S., and George, A. M., 2010, 2D and 3D elastic wave field vector decomposition in the wave number domain for VTI media: Geophysics, 75(3), 13−26.
[34] Zhang, Y., and Liu, Y., 2012, 3D poroviscoelastic rotated staggered finite-difference modeling with PML absorbing boundary conditions: 82nd SEG, Annual International Meeting, Expanded Abstracts, 1−5.
[35] Zhou, H., Wang, S. X., Li, G. F., and Shen, J. S., 2010, Analysis of complicated structure seismic wave fields: Applied Geophysics, 7(2), 185−192.
[1] Wang Hao, Li Ning, Wang Cai-Zhi, Wu Hong-Liang, Liu Peng, Li Yu-Sheng, Liu Ying-Ming, and Yuan Ye. Influence of rock fractures on the amplitude of dipole-source reflected shear wave*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 1-14.
[2] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[3] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[4] Qu Ying-Ming, Sun Jun-Zhi, Li Zhen-Chun, Huang Jian-Ping, Li Hai-Peng, and Sun Wen-Zhi. Forward modeling of ocean-bottom cable data and wave-mode separation in fluid–solid elastic media with irregular seabed[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 432-447.
[5] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[6] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[7] Sun Cheng-Yu, Wang Yan-Yan, Wu Dun-Shi, Qin Xiao-Jun. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
[8] Li Lin, Ma Jin-Feng, Wang Hao-Fan, Tan Ming-You, Cui Shi-Ling, Zhang Yun-Yin, Qu Zhi-Peng. Shear wave velocity prediction during CO2-EOR and sequestration in the Gao89 well block of the Shengli Oilfield[J]. APPLIED GEOPHYSICS, 2017, 14(3): 372-380.
[9] Wang De-Ying, Huang Jian-Ping, Kong Xue, Li Zhen-Chun, Wang Jiao. Improving the resolution of seismic traces based on the secondary time–frequency spectrum[J]. APPLIED GEOPHYSICS, 2017, 14(2): 236-246.
[10] Liu Xin, Liu Yang, Ren Zhi-Ming, Cai Xiao-Hui, Li Bei, Xu Shi-Gang, Zhou Le-Kai. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
[11] . Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
[12] Yang Jia-Jia, Luan Xi-Wu, Fang Gang, Liu Xin-Xin, Pan Jun, Wang Xiao-Jie. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
[13] Li Lei, Chen Hao, Wang Xiu-Ming. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. APPLIED GEOPHYSICS, 2015, 12(2): 221-234.
[14] Zhang Li-Yan, Wang Yan-Chun, Pei Jiang-Yun. Three-component seismic data in thin interbedded reservoir exploration[J]. APPLIED GEOPHYSICS, 2015, 12(1): 79-85.
[15] ZHOU Teng-Fei, PENG Geng-Xin, HU Tian-Yue, DUAN Wen-Sheng, YAO Feng-Chang, LIU Yi-Mou. Rayleigh wave nonlinear inversion based on the Firefly algorithm[J]. APPLIED GEOPHYSICS, 2014, 11(2): 167-178.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn