APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (3): 378-388    DOI: 10.1007/s11770-015-0510-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography
Zhang Qian-Jiang1, Dai Shi-Kun1, Chen Long-Wei1, Li Kun1, Zhao Dong-Dong1, and Huang Xing-Xing2
1. School of Info-physics and Geomatics Engineering, Central South University, Changsha 410083, China.
2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
 Download: PDF (1245 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss–Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhang Qian-Jiang
Dai Shi-Kun
Chen Long-Wei
Li Kun
Zhao Dong-Dong
Huang Xing-Xing
Key wordsFull-waveform inversion   rugged topography   attenuation boundary condition   finite element method     
Received: 2014-08-25;
Fund:

This work was financially supported by the National High Technology Research and Development Program of China (No. 2012AA09A20105) and the National Science Foundation Network (No. 41574127).

Cite this article:   
Zhang Qian-Jiang,Dai Shi-Kun,Chen Long-Wei et al. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography[J]. APPLIED GEOPHYSICS, 2015, 12(3): 378-388.
 
[1] Brossier, R., Operto, S., and Virieus, J., 2009, Seismic imaging of complex on shore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105−WCC118.
[2] Bérenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: J. Comput. Phys., 114(2), 185−200.
[3] Cao, S., and Greenhalgh, S., 1998, Attenuating boundary conditions for numerical modeling of acoustic wave propagation: Geophysics, 63(1), 231−243.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4),705−708.
[5] Chew, W. C., and Weedon, W. H., 1994, A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates: Microw. Opt. Tech. Lett., 7(13), 599−604.
[6] Du, Q. Z., Li, B., and Hou, B., 2009, Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme: Applied Geopysics, 6(1), 42−49.
[7] Du, Q. Z., Sun, R. Y., Qin, T., Zhu, Y. T., and Bi, L. F., 2010, A study of perfectly matched layers for joint multi-component reverse-time migration: Applied Geophysics, 7(2), 166−173.
[8] Dong, L. G., Chi, B. X., Tao, J. X., and Liu, Y. Z., 2013, Objective function behavior in acoustic full-waveform inversion: Chinese J. Geophys.(in Chinese), 56(10), 3445−3460.
[9] Fichtner, A., and Trampert, J., 2011, Resolution analysis in full waveform inversion: Geophysical Journal International, 187(3), 1604−1624.
[10] Gauthier, O., Virieux, J., and Tarantola, A., 1986, Two-dimensional nonlinear inversion of seismic waveforms: numerical results: Geophysics, 51(7), 1387−1403.
[11] Hicks, G. J., and Pratt, R. G., 2001, Reflection waveform Inversion Using Local Decent Methods:Estimating Attenuation and Velocity Over a Gas-Sand Deposit: Geophysics, 66(2), 598−612.
[12] Hu, G. H., Jia, C. M, Xia, H. R., He, J. B., Song, L., and Shen, Z. Q., 2013, Implementation and validation of 3D acoustic full waveform inversion: Geophysical Prospecting for Petroleum, 52(4), 417−425.
[13] Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72(5), SM155−SM167.
[14] Lailly, P. , 1983, The seismic inverse problem as a sequence of before stack migrations//Conference on inverse scattering: theory and applications: Society of Industrial and Applied Mathematics, Proceedings, 206−220.
[15] Long, G. H., Li, X. F., Zhang, M. G., and Zhu, T., 2009, Visco-acoustic transmission waveform inversion of velocity structure in Space-frequency domain: Acta Seismologica Sinica, 31(1), 32−41.
[16] Liu, G. F., Liu, H., Meng, X. H., and Yan, H. F., 2012, Frequency-related factors analysis in frequency domain waveform inversion: Chinese J. Geophys. (in Chinese), 55(4), 1345−1353.
[17] Malinowski, M., and Operto, S., 2008, Quantitative imaging of the Permo-Mesozoic complex and its basement by frequency domain waveform tomography of wide-aperture seismic data from the Polish Basin: Geophysical Prospecting, 56(6), 805−825.
[18] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49(5), 533−549.
[19] Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., and Dell'Aversana, P., 2004, Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study: Geophysical Prospecting, 52(6), 625−651.
[20] Plessix, R., and Perkins, C., 2010, Full waveform inversion of a deep water ocean bottom seismometer dataset: First Break, 28(1), 71−78.
[21] Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part1: Acoustic wave equation method: Geophysical Prospecting, 38(3), 287−310.
[22] Pratt, R. G., 1990, Inverse theory applied to multi-source cross-hole tomography. Part II: elastic wave-equation method, Geophysical Prospecting, 38(3), 311−330.
[23] Pratt, R., Shin, C., and Hicks, G., 1998, Gauss-Newton and full newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341−362.
[24] Pratt, R., and Sams, M., 1996, Reconciliation of crosshole seismic welocityies with well information in a layered sedimentary environment : Geophysics, 61(2), 549−560.
[25] Pratt, R., 1999, Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[26] Qin, Z., Lu,. M. H., Zheng, X. D., Yao, T., Zhang, C., and Song, J. Y., 2009, The implementation of an improved NPML absorbing boundary condition in elastic wave modeling:Applied Geophysics, 6(2), 113−121.
[27] Sirgue, L., Barkved, O., Dellinger, J., Albertin, U., and Kommedal, J. H., 2010, Full waveform inversion: the next leap forward in imaging at Valhall: First Break, 28(4), 65−70.
[28] Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain: Geophysical Journal International, 173(3), 922−931.
[29] Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace-Fourier domain: Geophysical Journal International, 177(3), 1067−1079.
[30] Song, J. Y., Zheng, X. D., Qin, Z., and Su, B. Y., 2011, Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method: Applied Geophysics, 8(4), 303−310.
[31] Song, R. L., Ma, J., and Wang K. S., 2005, The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Applied Geophysics, 2(4), 216−222.
[32] Song, Z. M., Williamson, P. R., and Pratt, R. G., 1995, Frequency-domain acoustic-wave modeling and inversion of crosshole data: Part II- inversion method, synthetic experiments and real-data results: Geophysics, 60(3), 796−809.
[33] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259−1266.
[34] Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geophysics, 51(10), 1893−1903.
[35] Wang, W., Han, B., and Tang, J. P., 2013, Regularization method with sparsity constraints for seismic waveform inversion: Chinese J. Geophys. (in Chinese), 56(1), 289−297.
[36] Wu, X. P., and Xu, G. M., 1999, Derivation and analysis of partial derivative matrix in resistivity 3-D inversion: Oil Geophysical Prospecting, 34(4), 363−372.
[37] Xu, S. Z., 1994, The Finite-Element Method in Geophysics: Beijing, Science Press, 261−285.
[38] Xu, K., and Wang, M. Y., 2001, Finite Element Inversion of the Coefficients of Acoustic Equation in Frequency Domain: Chinese J. Geophys. (in Chinese), 44(6), 852−864.
[39] Yang, Q. Y., Hu, G. H., and Wang, L. X., 2014, Research status and development trend of full waveform inversion: Geophysical prospecting for petroleum, 53(1), 77−83.
[40] Yuan, S. Y., Wang, S. X., Sun, W. J., Miao, L. N., and Li, Z. H., 2014, Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation: Exploration Geophysics, 45(2), 94−104.
[41] Zhao, J. G., Shi, R. Q., Chen, J. Y., Pan, J. G., and Wang, H. B., 2014, An matched Z-transform perfectly matched layer absorbing boundary in the numerical modeling of viscoacoustic wave equations: Chinese J. Geophys. (in Chinese), 57(4), 1284−1291.
[42] Zhao, J. G., and Shi, R. Q., 2013, Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations: Applied Geophysics, 10(3), 323−336.
[1] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[2] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[3] Qu Ying-Ming, Li Zhen-Chun, Huang Jian-Ping, Li Jin-Li. Prismatic and full-waveform joint inversion[J]. APPLIED GEOPHYSICS, 2016, 13(3): 511-518.
[4] Kuang Xing-Tao, Yang Hai, Zhu Xiao-Ying, Li Wei. Singularity-free expression of magnetic field of cuboid under undulating terrain[J]. APPLIED GEOPHYSICS, 2016, 13(2): 238-248.
[5] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Qiang Jian-Ke, Li Kun, Zhao Dong-Dong. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement[J]. APPLIED GEOPHYSICS, 2016, 13(2): 257-266.
[6] WANG Yi, DONG Liang-Guo, LIU Yu-Zhu. Improved hybrid iterative optimization method for seismic full waveform inversion[J]. APPLIED GEOPHYSICS, 2013, 10(3): 265-277.
[7] HAN Miao, HAN Li-Guo, LIU Chun-Cheng, CHEN Bao-Shu. Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding[J]. APPLIED GEOPHYSICS, 2013, 10(1): 41-52.
[8] SONG Jian-Yong, ZHENG Xiao-Dong, QIN Zhen, SU Ben-Yu. Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method[J]. APPLIED GEOPHYSICS, 2011, 8(4): 303-310.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn