APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 221-234    DOI: 10.1007/s11770-015-0479-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Weighted-elastic-wave interferometric imaging of microseismic source location
Li Lei1,2, Chen Hao1, and Wang Xiu-Ming1
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
 Download: PDF (2402 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted-elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with low-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Li Lei
Chen Hao
Wang Xiu-Ming
Key wordsMicroseismic monitoring   seismic source location   elastic wave   interferometric imaging   time-reverse imaging     
Received: 2014-10-28;
Fund:

This work is supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting ( No. ZDYZ2012-1) and National Natural Science Foundation of China (No. 11374322).

Cite this article:   
Li Lei,Chen Hao,Wang Xiu-Ming. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. APPLIED GEOPHYSICS, 2015, 12(2): 221-234.
 
[1] Anikiev, D., Valenta, J., Staněk, F., and Eisner, L., 2014, Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing: Geophysical Journal International, 198(1), 249−258.
[2] Artman, B., Podladtchikov, I., and Witten, B., 2010, Source location using time-reverse imaging: Geophysical Prospecting, 58, 861−873.
[3] Bardainne, T., Gaucher, E., Magnitude, and Cerda, F., 2009, Comparison of picking-based and waveform-based location methods of microseismic events: Application to a fracturing job: 79th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1547−1551.
[4] Burch, D. N., Daniels, J., Gillard, M., Underhill, W., Exler, V. A., Favoretti, L., Le Calvez, J., Lecerf, B., Potapenko, D., and Maschio, L., 2009, Live hydraulic fracture monitoring and diversion: Oilfield Review, 21(3), 18−31.
[5] Chambers, K., Dando, B. D. E., Jones, G. A., Velasco, R., and Wilson, S. A., 2014, Moment tensor migration imaging: Geophysical Prospecting, 62(4), 879−896.
[6] Claerbout, J. F., 1968, Synthesis of a layered medium from its acoustic transmission response: Geophysics, 33(2), 264−269.
[7] Das, I., and Zoback, M., 2013, Long-period, long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs - part 1: Waveform characteristics: Geophysics, 78(6), KS97−KS108.
[8] Dong, L. G., Ma, Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics (in Chinese), 43(3), 411−419.
[9] Drew, J. E., Leslie, H. D., Armstrong, P. N., and Michard, G., 2005, Automated microseismic event detection and location by continuous spatial mapping: The 81st SPEAnnual Technical Conference and Exhibition, SPE Paper 95513.
[10] Drew, J. E., White, R. S., Tilmann, F., and Tarasewicz, J., 2013, Coalescence microseismic mapping: Geophysical Journal International, 195(3), 1773−1785.
[11] Duncan, P. M., and Eisner, L., 2010, Reservoir characterization using surface microseismic monitoring: Geophysics, 75(5), 75A139−175A146.
[12] Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., and Keller, W., 2010, Comparison of surface and borehole locations of induced seismicity: Geophysical Prospecting, 58(5), 809−820.
[13] Fink, M., 1999, Time-reversed acoustics: Scientific American, November, 91−97.
[14] Gajewski, D., and Tessmer, E., 2005, Reverse modelling for seismic event characterization: Geophysical Journal International, 163(1), 276−284.
[15] Gajewski, D., Anikiev, D., Kashtan, B., and Tessmer, E., 2007, Localization of seismic events by diffraction stacking: 77th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1287−1291.
[16] Geiger, L., 1912, Probability method for the determination of earthquake epicenters from arrival time only: Bull St Louis Univ, 8, 60−71.
[17] Gharti, H. N., Oye, V., Kühn, D., and Zhao, P., 2011, Simultaneous microearthquake location and moment-tensor estimation using time-reversal imaging: 81st Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1632−1637.
[18] Grandi, S., and Oates, S., 2009, Microseismic event location by cross-correlation migration of surface array data for permanent reservoir monitoring: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, X012.
[19] Grigoli, F., Cesca, S., Vassallo, M., and Dahm, T., 2013, Automated seismic event location by travel‐time stacking: An application to mining induced seismicity: Seismological Research Letters, 84(4), 666−677.
[20] Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., and Dahm, T., 2014, Automated seismic event location by waveform coherence analysis: Geophysical Journal International, 196(3), 1742−1753.
[21] Haldorsen, J. B. U., Milenkovic, M., Farmani, M. B., Brooks, N., and Crowell, C., 2012, Locating microseismic events using migration-based deconvolution: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1−5.
[22] Haldorsen, J. B. U., Brooks, N. J., and Milenkovic, M., 2013, Locating microseismic sources using migration-based deconvolution: Geophysics, 78(5), KS73−KS84.
[23] Jupe, A., Cowles, J., and Jones, R., 1998, Microseismic monitoring:Listen and see the reservoir: World Oil, 219(12), 171−174.
[24] Kao, H., and Shan, S. J., 2004, The source-scanning algorithm: Mapping the distribution of seismic sources in time and space: Geophysical Journal International, 157(2), 589−594.
[25] Kao, H., and Shan, S. J., 2007, Rapid identification of earthquake rupture plane using source-scanning algorithm: Geophysical Journal International, 168(3), 1011−1020.
[26] Li, J. L., Zhang, H. J., Rodi, W. L., and Toksoz, M. N., 2013, Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths: Geophysical Journal International, 195(3), 1917−1931.
[27] Li, Z. C., Sheng, G. C., Wang, W. B., Cui, Q. H., and Zhou, D. S., 2014, Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components: Oil Geophysical Prospecting, 49(4), 661−666, 671.
[28] Liang, B., and Zhu, G. S., 2004, Microseismic monitoring in oil and gas field exploration and development: Petroleum Industry Press, Beijing.
[29] Maxwell, S. C., 2010a, Microseimic: Growth born from success: The Leading Edge, 29, 338-343.
[30] Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M., 2010b, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75(5), 75A129−175A137.
[31] McMechan, G. A., 1982, Determination of source parameters by wavefield extrapolation: Geophysical Journal International, 71(4), 613−628.
[32] McMechan, G. A., H.Luetgert, J., and Mooney, W. D., 1985, Imaging of earthquake sources in long valley caldera,california,1983: Bulletin of the Seismological Society of Ameirca, 75, 1005−1020.
[33] Miao, H. X., Jiang, F. X., Song, X. J., Song, J. Y., Yang, S. H., and Jiao, J. R., 2012a, Automatically positioning microseismic sources in mining by the stereo tomographic method using full wavefields: Applied Geophysics, 9(2), 168−176.
[34] Miao, H. X., Jiang, F. X., Song, X. J., Yang, S. H., and Jiao, J. R., 2012b, Tomographic inversion for microseismic source function and parameters in mining: Applied Geophysics, 9(3), 341−348.
[35] Mueller, M., 2013, Meeting the challenge of uncertainty in surface microseismic monitoring: First Break, 31(7), 89−95.
[36] Schuster, G. T., 2001, Theory of daylight/interferometric imaging:Tutorial: 63rd Conference & Technical Exhibition, EAGE, Expanded Abstracts, A32.
[37] Schuster, G. T., 2009, Seismic interferometry: Cambridge University Press Cambridge, New York.
[38] Schuster, G. T., Yu, J., and Sheng, J., 2004, Interferometric/daylight seismic imaging: Geophysical Journal International, 157(2), 838−852.
[39] Song, W. Q., Chen, Z. D., and Mao, Z. H., 2008, Hydro-racturing break microseismic monitoring technology: China University of Petroleum Press, Dongying.
[40] Tian, Y., and Chen, X. F., 2002, Review of seismic location study: Progress in Geophysics, 17(1), 147−155.
[41] Wang, C. L., Cheng, J. B., Yin, C., and Liu, H., 2013, Microseismic events location of surface and borehole observation with reverse-time focusing using interferometry technique: Chinese Journal of Geophysics (in Chinese), 56(9), 3184−3196.
[42] Wapenaar, K., Draganov, D., and Snieder, R., 2010a, Tutorial on seismic interferometry:Part 1 — basic principles and applications: Geophysics, 75(5), 75A195−175A209.
[43] Wapenaar, K., Slob, E., and Snieder, R., 2010b, Tutorial on seismic interferometry: Part 2-underlying theory and new advances: Geophysics, 75(5), 75A211−275A227.
[44] Xiao, X., Luo, Y., Fu, Q., Jervis, M., Dasgupta, S., and Kelamis, P., 2009, Locate microseismicity by seismic interferometry: EAGE Passive Seismic Workshop, Extended Abstract, A22.
[45] Yang, R. Z., Zhao, Z. G., Peng, W. J., Gu, Y. B., Wang, Z. G., and Zhuang, X. Q., 2013, Integrated application of 3d seismic and microseismic data in the development of tight gas reservoirs: Applied Geophysics, 10(2), 157−169.
[46] Yang, W. D., Jin, X., Li, S. Y., and Ma, Q., 2005, Study of seismic location methods: Earthquake Engineering and Engineering Vibration, 25(1), 14−20.
[47] Yilmaz, Ö., 2001, Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data: Society of Exploration Geophysicists.
[48] Zhang, S., Liu, Q. L., Zhao, Q., and Jiang, Y. D., 2002, Application of microseismic monitoring technology in development of oil field: Geophysical Prospecting for Petroleum (in Chinese), 41(2), 226−231.
[49] Zhebel, O., and Eisner, L., 2012, Simultaneous microseismic event localization and source mechanism determination: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1−5.
[50] Zhebel, O., Gajewski, D., and Vanelle, C., 2010, Localization of seismic events in 3d media by diffraction stacking: 80th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2181−2185.
[1] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[2] Liu Xin, Liu Yang, Ren Zhi-Ming, Cai Xiao-Hui, Li Bei, Xu Shi-Gang, Zhou Le-Kai. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
[3] . Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
[4] Wang Wei-Zhong, Hu Tian-Yue, Lv Xue-Mei , Qin Zhen, Li Yan-Dong, Zhang Yan. Variable-order rotated staggered-grid method for elastic-wave forward modeling[J]. APPLIED GEOPHYSICS, 2015, 12(3): 389-400.
[5] ZHAO Jian-Guo, SHI Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations[J]. APPLIED GEOPHYSICS, 2013, 10(3): 323-336.
[6] DUAN Yu-Ting, HU Tian-Yue, YAO Feng-Chang, ZHANG Yan. 3D elastic wave equation forward modeling based on the precise integration method[J]. APPLIED GEOPHYSICS, 2013, 10(1): 71-78.
[7] QIN Zhen, LU Ming-Hui, ZHENG Xiao-Dong, YAO Yao, ZHANG Cai, SONG Jian-Yong. The implementation of an improved NPML absorbing boundary condition in elastic wave modeling[J]. APPLIED GEOPHYSICS, 2009, 6(2): 113-121.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn