APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 212-220    DOI: 10.1007/s11770-015-0484-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Low-frequency data analysis and expansion
Zhang Jun-Hua1, Zhang Bin-Bin1, Zhang Zai-Jin1, Liang Hong-Xian2, and Ge Da-Ming2
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
2. Geophysical Prospecting Research Institute of Shengli Oilfield, Dongying 257022, China.
 Download: PDF (1491 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhang Jun-Hua
Zhang Bin-Bin
Zhang Zai-Jin
Liang Hong-Xian
Ge Da-Ming
Key wordsseismic wavelet   forward modeling   low-frequency expansion   compressed sensing   sparse constraint     
Received: 2015-01-30;
Fund:

This work was supported by the National Science and Technology Major Project (No. 2011ZX05051) and Science and Technology Project of Shengli Oilfield (No. YKW1301).

Cite this article:   
Zhang Jun-Hua,Zhang Bin-Bin,Zhang Zai-Jin et al. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
 
[1] Beck, A., and Teboulle, M., 2009, A fast iterative shrinkage-thresholding algorithm for linear inverse problems: SIAM Journal on Imaging Sciences, 2(1), 183−202.
[2] Baeten, G., de Maag, J. W., Plessix, R. E., Klaassen, R., Qureshi, T., Kleemeyer, M., ten Kroode, F., and Zhang R. J., 2013, The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study: Geophysical Prospecting, 61(4), 701−711.
[3] Bai, L. S., Liu, Y. K., Lu, H. Y., Wang, Y, B., and Chang X., 2014, Curvelet-domain joint iterative seismic data reconstruction based on compressed sensing: Chinese J. Geophys. (in Chinese), 57(9), 2937−2945.
[4] Castagna, J. P., Sun, S. J., and Siegfried, R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22(2), 120−127.
[5] Candès, E. J., Romberg, J. K., and Tao, T., 2006a, Stable signal recovery from incomplete and inaccurate measurements: Communications on Pure and Applied Mathematics, 59(8), 1207−1223.
[6] Candès, E. J., Romberg, J., and Tao, T., 2006b, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE transaction on information theory, 52(2), 489−509.
[7] Chen, X. H., He, Z. H., Zhu, S. X., Liu, W., and Zhong W. L., 2012, Seismic low-frequency-based calculation of reservoir fluid mobility and its applications: Applied Geophysics, 9(3), 326−332.
[8] Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289−1306.
[9] Guan, L. P., and Tang, Q. J., 1990, High/low frequency compensation of seismic signal: Geophysical Prospecting for Petroleum, 29(3), 35−45.
[10] Han, L. G., Zhang, Y., Han, L., and Yu, Q. L., 2012, Compressed sensing and sparse inversion based low-frequency information compensation of seismic data: Journal of JiLin University (Earth Science Edition), 42(3), 259−264.
[11] Herrmann, F. J., and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 233−248.
[12] Kallweit, R. S., and Wood, L. C., 1982, The limits of resolution of zero-phase wavelets: Geophysics, 47(7), 1035−1046.
[13] Kelly, S., Ramos-Martinez, J., and Tsimelzon, B., 2009, The effect of improved, low-frequency bandwidth in full-waveform inversion for velocity: 79th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 3974−3977.
[14] Li, Z. C., and Zhang, J. H., 2004, Seismic data processing method: The Press of University of Petroleum.
[15] Li, G. L., Chen G., and Zhong J. Y., 2013, Analysis of geophone properties effects for land seismic data: Applied Geophysics, 6(1), 91−101.
[16] Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69(1), 231−248.
[17] Sun, J. H., Zhang, Y. S., Dong, J. G., and Han, Z. Y., 2012, Low frequency signal receiver technology: Petroleum Instrumenis, 26(6), 73−76.
[18] Tao, Z. F., Zhao, Y. L., and Ma, L., 2011, Low frequency seismic and low frequency vibrator: EGP, 21(2), 71−76
[19] ten Kroode, F., Bergler, S., Corsten, C., de Maag, J. W., Strijbos, F., and Tijhof, H., 2013, Broadband seismic data-The importance of low frequencies: Geophysics, 78(2), WA3−WA14.
[20] Whitcombe, D., Hodgson, L., 2007, Stabilizing the low frequencies: The Leading Edge, 26(1), 66−72.
[21] Woodburn, N., Hardwick, A., and Travis, T., 2011, Enhanced low frequency signal processing for sub-basalt imaging: 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC, Vienna, Austria.
[22] Wang, X. W., and Wang, H. Z., 2014, A research of high-resolution plane-wave decomposition based on compressed sensing: Chinese J. Geophys.(in Chinese), 57(9), 2946−2960.
[23] Yuan, S. Y., Wang, S. X., Luo, C. M., and He, Y. X., 2015, Simultaneous multitrace impedance inversion with transform-domain sparsity promotion: Geophysics, 80(2), R71−R80.
[24] Ziolkowski, A., Hanssen, P., Gatliff R., Jakubowicz, H., Dobson, A., Hampson, G., Li, X. Y., and Liu E. R., 2003, Use of low frequencies for sub-basalt imaging: Geophysical Prospecting, 51(3), 169−182.
[1] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[2] Wu Shao-Jiang, Wang Yi-Bo, Ma Yue, Chang Xu. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
[3] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[4] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[5] Yin Chang-Chun, Zhang Ping, Cai Jing. Forward modeling of marine DC resistivity method for a layered anisotropic earth[J]. APPLIED GEOPHYSICS, 2016, 13(2): 279-287.
[6] Zhu Chao, Guo Qing-Xin, Gong Qing-Shun, Liu Zhan-Guo, Li Sen-Ming, Huang Ge-Ping. Prestack forward modeling of tight reservoirs based on the Xu–White model[J]. APPLIED GEOPHYSICS, 2015, 12(3): 421-431.
[7] Yang Ya-Peng, Wu Mei-Ping, Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
[8] Wang Zong-Jun, Cao Si-Yuan, Zhang Hao-Ran, Qu Ying-Ming, Yuan Dian, Yang Jin-Hao, Zhang De-Long, Shao Guan-Ming. Estimation of quality factors by energy ratio method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 86-92.
[9] YANG Jia-Jia, HE Bing-Shou, ZHANG Jian-Zhong. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor[J]. APPLIED GEOPHYSICS, 2014, 11(4): 418-428.
[10] SUN Xue-Kai, SUN Zan-Dong, XIE Hui-Wen. Nonstationary sparsity-constrained seismic deconvolution[J]. APPLIED GEOPHYSICS, 2014, 11(4): 459-467.
[11] CAI Rui, ZHAO Qun, SHE De-Ping, YANG Li, CAO Hui, YANG Qin-Yong. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
[12] GOU Fu-Yan, LIU Cai, LIU Yang, FENG Xuan, CUI Fang-Zi. Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain[J]. APPLIED GEOPHYSICS, 2014, 11(3): 277-288.
[13] WANG Han-Chuang, CHEN Sheng-Chang, ZHANG Bo, SHE De-Ping. Separation method for multi-source blended seismic data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 251-264.
[14] ZHAO Hu, YIN Cheng, HOU Peng-Jun, PU Long-Chuan, HUANG Yong, YUAN Guo-Hui. An automatical infill shot method for uniform imaging of target layer[J]. APPLIED GEOPHYSICS, 2013, 10(2): 222-228.
[15] ZHANG Hua, CHEN Xiao-Hong, WU Xin-Min. Seismic data reconstruction based on CS and Fourier theory
[J]. APPLIED GEOPHYSICS, 2013, 10(2): 170-180.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn