APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 157-168    DOI: 10.1007/s11770-015-00487-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Attenuation compensation in multicomponent Gaussian beam prestack depth migration
Wu Juan1,2, Chen Xiao-Hong1,2, Bai Min1,2, and Liu Guo-Chang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. National Engineering Laboratory of Offshore Oil Exploration, China University of Petroleum, Beijing 102249, China.
 Download: PDF (1155 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Wu Juan
Chen Xiao-Hong
Bai Min
Liu Guo-Chang
Key wordsAttenuation compensation   multicomponent   Gaussian beam   viscoelastic simulation   prestack depth migration     
Received: 2014-07-18;
Fund:

The research is financially supported by the National Natural Science Foundation of China (No. U1262207), the National Science and Technology Major Project of China (Nos. 2011 ZX05023-005-005 and 2011 ZX05019-006) and the PetroChina Innovation Foundation (No. 2013D-5006-0303).

Cite this article:   
Wu Juan,Chen Xiao-Hong,Bai Min et al. Attenuation compensation in multicomponent Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2015, 12(2): 157-168.
 
[1] Cavalca, M., Fletcher, R., and Riedel, M., 2013, Q-compensation in complex media-ray based and wavefield extrapolation approaches: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 3831−3835.
[2] Cerveny, V., 1985, Gaussian beam synthetic seismograms. J. geophys, 58(1−3), 44−72.
[3] Cerveny, V., 2007, A note on dynamic ray tracing in ray-centered coordinates in anisotropic inhomogeneous media: Studia Geophysica et Geodaetica, 51, 411−422.
[4] Cerveny V., 1983, Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method: Geophysical Journal of the Royal Astronomical Society, 73, 389−426.
[5] Fletcher, R. P., Nichols, D., and Cavalca, M., 2012, Wave path-consistent Effective Q Estimation for Q-compensated Reverse-time Migration: 74th EAGE Annual Meeting, Expanded Abstracts, A020.
[6] Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70(4), S71−S77.
[7] Gray, S. H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74(2), S11−S23.
[8] Hale, D., 1992a, Migration by the Kirchhoff, slant stack, and Guassian beam methods: Colorado School of Mines Center for Wave Phenomena Report, 121.
[9] Hale, D., 1992b, Computational aspects of Gaussian beam migration: Colorado School of Mines Center for Wave Phenomena Report, 139.
[10] Han, J., Wang, Y., and Lu, J. 2013, Multi-component Gaussian beam prestack depth migration. Journal of Geophysics and Engineering, 10(5), 055008.
[11] Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416−1428.
[12] Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240−1250.
[13] Li, Q. Z., 1993, High-resolution seismic data processing: Petroleum Industry Press, Beijing, 37−38.
[14] Mittet, R., Sollie, R., and Hokstad, K., 1995, Prestack depth migration with compensation for absorption and dispersion: Geophysics, 60(5), 1485−1494.
[15] Nowack, R. L., Chen, W. P., and Tseng, T. L., 2010, Application of Gaussian-beam migration to multiscale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet: Bulletin of the Seismological Society of America, 100(4), 1743−1754.
[16] Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R., 2010, Depth migration by the Gaussian beam summation method: Geophysics, 75(2), S81−S93.
[17] Traynin, P., Liu, J., and Reilly, J., 2008, Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration: 78th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2412−2416.
[18] Udias, A., 1999, Principles of seismology: Cambridge University Press, England.
[19] Xie, Y., Notfors, C., Sun, J., Xin, K., Biswal, A., and Balasubramaniam, M. K., 2010, 3D prestack beam migration with compensation for frequency dependent absorption and dispersion: 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC.
[20] Xie, Y., Xin, K., Sun, J., and Notfors, C., 2009, 3D prestack depth migration with compensation for frequency dependent absorption and dispersion: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2919−2923.
[21] Yan, H. Y., and Liu, Y., 2013, Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61(5), 941−954.
[22] Zhang, Y., Karazincir, M., Notfors, C., Sun, J., and Hung, B., 2002, Amplitude preserving v(z) prestack Kirchhoff migration, demigration and modeling: Migration, 8(1), 3.
[23] Zhang, Y., Zhang, P., and Zhang, H. Z., 2010, Compensating for visco-acoustic effects in reverse-time migration: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3160−3164.
[24] Zhao, Y., Liu Y., and Ren Z. M., 2014, Viscoacoustic prestack reverse time migration based on the optimal time-space domain high-order finite-difference method: Applied Geophysics, 11(1), 50−62.
[25] Zhu, T., Harris, J. M., and Biondi, B., 2014, Q-compensated reverse-time migration. Geophysics, 79(3), S77−S87.
[1] Gong Hao, Chen Hao, He Xiao, Su Chang, Wang Xiu-Ming, Wang Bai-Cun, and Yan Xiao-Hui. Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 393-400.
[2] Meng Qing-Xin, Hu Xiang-Yun, Pan He-Ping, Zhou Feng. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
[3] Liu Shao-Yong, Wang Hua-Zhong, Liu Tai-Chen, Hu Ying, Zhang Cai. Kirchhoff PSDM angle-gather generation based on the traveltime gradient[J]. APPLIED GEOPHYSICS, 2015, 12(1): 64-72.
[4] HAN Jian-Guang, WANG Bin, HAN Ning, XING Zhan-Tao, LU Jun. Multiwave velocity analysis based on Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2014, 11(2): 186-196.
[5] LI Fang, WANG Shou-Dong, CHEN Xiao-Hong, LIU Guo-Chang, ZHENG Qiang. Prestack nonstationary deconvolution based on variable-step sampling in the radial trace domain[J]. APPLIED GEOPHYSICS, 2013, 10(4): 423-432.
[6] ZHOU Hui, LIN He, SHENG Shan-Bo, CHEN Han-Ming, WANG Ying. High angle prestack depth migration with absorption compensation[J]. APPLIED GEOPHYSICS, 2012, 9(3): 293-300.
[7] WANG Pu, HU Tian-Yue. AVO approximation for PS-wave and its application in PP/PS joint inversion[J]. APPLIED GEOPHYSICS, 2011, 8(3): 189-196.
[8] WANG Shou-Dong. Attenuation compensation method based on inversion[J]. APPLIED GEOPHYSICS, 2011, 8(2): 150-157.
[9] DU Qi-Zhen, SUN Rui-Yan, QIN Tong, ZHU Yi-Tong, BI Li-Fei. A study of perfectly matched layers for joint multi-component reverse-time migration[J]. APPLIED GEOPHYSICS, 2010, 7(2): 166-173.
[10] LU Jun, WANG Bin, YANG Chun-Ying. Instantaneous polarization filtering focused on suppression of surface waves[J]. APPLIED GEOPHYSICS, 2010, 6(1): 88-97.
[11] ZHANG Kai, LI Zhen-Chun, ZENG Tong-Sheng, DONG Xiao-Chun. Residual curvature migration velocity analysis for angle domain common imaging gathers[J]. APPLIED GEOPHYSICS, 2010, 6(1): 49-56.
[12] ZHANG Kai, LI Zhen-Chun, ZENG Tong-Sheng, DONG Xiao-Chun. Residual curvature migration velocity analysis for angle domain common imaging gathers[J]. APPLIED GEOPHYSICS, 2010, 7(1): 49-56.
[13] LU Jun, WANG Bin, YANG Chun-Ying. Instantaneous polarization filtering focused on suppression of surface waves[J]. APPLIED GEOPHYSICS, 2010, 7(1): 88-97.
[14] ZHAO Tai-Yin, HU Guang-Min, HE Zhen-Hua, HUANG De-Ji. A Quadratic precision generalized nonlinear global optimization migration velocity inversion method[J]. APPLIED GEOPHYSICS, 2009, 6(2): 138-149.
[15] YE Yue-Ming, LI Zhen-Chun, XU Xiu-Gang, ZHU Xu-Feng, TONG Zhao-Qi. Preserved amplitude migration based on the one way wave equation in the angle domain[J]. APPLIED GEOPHYSICS, 2009, 6(1): 50-58.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn